
Final Technical Report
An Extensible and Scalable Framework

for Formal Modeling, Analysis, and Development
of Distributed Systems

Contract No. FA9550-07-C-0114
STTR Phase I

Nancy A. Lynch* Lam-cut D. Michel* Alexander A. Shvartsman1

November 30, 2008

Project summary. This Small Business Technology Tnuisrer Phase I project advanced the
stale uf the art in formal modeling and engineering of complex distributed systems. The pursued
research and development approach included: (a) modeling languagc(H) that can be used to repre-
sent complex distributed systems and their components, theory and methodology providing sound
inathemalical basis for modeling systems and reasoning about their properties, (6) extensible and
scalable analysis tools that can be used to validate correctness and performauce properties, and au-
tomated synthesis.tools that can produce efficient deployment schemes of the software components
in target networks subject to specified constraints.

In prior research we developed an expressive modeting language, called Tempo, that can be
used to represent complex distributed systems and their compoueuts. We also have developed the
theory and methodology providing sonud mathematical basis for modeling systems and reasoning
about their properties, along with tools that can be used to validate correctness and performance
properties. In tins project we have extended the methodology to incorporate additional means for
reasoning about probabilistic and hybrid systems. Based on these developments, we built an ex-
tended integrated development environment, called Tempo, for modeling, synthesis, and analysis of
distributed systems We have also prototyped a methodology that can be used to generate working
code from system models and yield dhcient deployment of the software components in target net-
works. The ultimate goal of this work is to develop a complete and comprehensive formal method-
ology based in sound theory, and an industrial-grade extensible integrated software engineering
environment for the huplementors of modern distributed software systems. The preliminary release

of the system for Linux, Windows, and OSX-PPC platforms is available at www.veromodo.com.

■Co-Priiicipal Investigator and Cliief Todmology Oificcr, VKROMODO, Inc.. F.nmil: lyiidi^tlioory.rsail.mit.cdu.
'Prindpiil lnv<\stigal.«r. Email: ldmScjj-c.iicoiiii.edu.
'Co-Principal tnvestfgRlOT and President, VKROMODO, Inc. Email: iiiLsSvcminodo.com,

^oiao^Ki^

VnRQMoDU, Inc. Final Technical Rcpotl FA9550~07-C-0114 2

Contents

1 Introduction 3
1.1 The probtetn and our solution 3
1.2 Suinnuiry of projucl objectives and accompiislniK-iils 4
1.3 Project teiini and academic partner institution 0
1.4 Fubliauions g
L5 Acknou'lcdRinents 7
1.6 Ducument structure 7

2 Tempo Toolkit for Timed Input/Output Automata Formalism 7
2.1 Wliat is the Tempo language? 7
2.2 Tempo language overview S

2.2.1 Timed I/O Automata 8
2.2.2 The Tempo language and tools g

2.3 An Example: mutual exclusion algorithm 9
2.3.1 The Tempo speciliiaLion 10
2.3.2 Properties of the algorithm 14

3 Extensions of I/O Automata and Timed I/O Automata Frameworks 14
3.1 Proljabilistic extensions 15
3.2 Extensions for reasoning about security protocols 15
3.3 Extensions for hybrid systems 15

4 Tempo Toolkit: Arcbitcctmc and Language 1G
4.1 The Architecture of TKMPO 17
4.2 Tempo language 18

5 Deployment Problems 18
5.1 Augmenting Tempo with deploymenl annotations 10
5.2 Language lixtensions for Deploymenl Annoiations 21
5.3 Eventually Seriali/able Data Service Aimotations 25

G Generating deployment models 20
G.l Translation Sclieme 2ti
6.2 Comet Program 28
G,3 Tempo Language Heslnctions 29

7 Solving deployment models 29
7.1 The Abstract Model 30
7.2 The CP Model 30

7.2.1 The Model 31
7.2.2 The Search Procedure 32

8 A Formal Treatment of an Abstract Channel Implementation Using Java Sockets and
TCP 33
S-l IL-uionale: towards code generation 34
8.2 Technical development; channel implementation 35

9 Conclusion 37

Bibliography and Roforcnccs 38

VEROMODO, Inc. Final Tec,m'cal jjgggd FA9S50-07-C-0114 |1_

1 Introduction

This is the linal tochiiiccti report for Phase I STTR project thai focused on oxlcnsians to the TIOA
(Timed Input/OutpuL Aulomata) language and framework as well as its companiuii system: Tempo.
Specifically, il describes the advancements m the theory of TIOA and the addition of a language
extension and software tool back-end aimed at assisting users of the methodulogy when turning

their attention lu the implementation aspects of their disUibuted system. The new extension makes
it possible to specify the characteristics of a deployment environment at the TIOA level with model
annotations. The annotations are then used by Tempo to derive a combinatorial optimization model
that produces an optimal (with respect to an objective; specified in the annotations) deploymenl
scenario. The back-end tool relies on state-of-the-art combinatorial optiniizatiou tool to solve the
optimization problem. The Tempo tool-chain now offers an end-to-end solution starting with the
specification of a distributed algorithm to its optimal deployment on a target platform.

1.1 The problem and our solution

Challenges in developing distributed systems. Developing dependable distributed systems
for modern cumputing platforms continues to be challenging. While the availability of distributed
middleware makes feasible the construction of systems thai run on distributed platforms, ensuring
that the resulting systems satisfy specific safety, timing, and fault-tolerance requirements remains
problematic. The middleware services used for constructing distributed software are specified in-
formally and without precise guarantees of efiiciency. timing, scalability, cninpositionality, and
fault-tolerance. Even when services and algorithms are specified fonnally, rigorous reasoning about
the specifications is often left, out of the development, process.

As contemporary distributed systems continue to grow in complexity and sophistication in many
domains, these systems are rcfphrnd to have formally-specified guarantees of safety, performance,
and fault-tolerance. Currenl software-engineering practice limits the specification of such rcquUe-
ments to informal descriptions. When formal specifications are given, they are typically provided
only for the system interfaces. The specification of interfaces alone stops far short of satisfying the
needs of users of critical systems. Such systems need to be equipped with precise specifications
of their semantics and guaranteed behavior. When a system is built of smaller components, it is
iniportaiit to specify the properties of the system in terms of the properties of its components.

We view formal specification and analysis as valuable tools that should be at the disposal of

the developers of distributed systems.
Furthermore, once a system is specified, the implementation efforts are often informally con-

nected to the specification which implies that the guarantees offered by the format tools may not
carry over to the implementation. Additionally, the deployment of the implementation on an ac-
tual platform raises its own set of challenges to meet the timing, fault-tolerance and scalability
requirements.

It is thus desirable to offer an integrated approach that covers the entire process, from design
to implementation and deployment of the resulting distributed system.

Our approach to modeling and analysis of complex distributed systems. This project
developed techniques and tools that are designed to be used in constructing provably correct dis-
tributed software. At the specification level. It leverages the IOA formalism (named after In-
put/Output Automata) and its companion toolset Tempo. IOA use mathematical models -in

VBRdMODO, Inc. Final Technical Report FAOoSO-OJ-C-OiN

parlicular, iuieraciiiig slaLf1 macliines-as an integral part of the software developmeiil process.
The stages of lliis process within the scope of our frainework are as follows. Abstract requireuienis
for a distributed system arc specified using a modeling language. These specifications arc then rc-
liiied through multiple levels of abstraction. Each relinement step is fuin:ally validated. Validation
techniques include a combination of simulation, model checking, and Ueareni proving. The goal
of the refinement process is to produce sufficiently detailed models that (a) can ultimately be used
to generate distributed code automatically, and that (b) are guaranteed to be consistent with the
modeled system requirements.

To support automated formal methods for constructing or analyzing systems, a modeling lan-
guage musi rest on a solid mathematical foundation. The I/O automaton mode! [20] and its timed
extensions 113] provide such a foundation. I/O automata have been used to describe and verify
many distributed algorithms and systems (see, for example, (1G]), and Tinted I/O Automata have
been used to model timing-dependent distributed algorithms and real-time control systems [13].

The Tempo language uses the Timed I/O Automata to describe interacting state machines.
They are nondelermimstic. which makes them suitable for describing syslems hi their most general
forms. The state of a TIOA can change in two ways; discrete tmnsilkms, which are labeled by
discrete actions, change the state instantaneously, whereas Imjccloricn are functions that describe
the evolution of the state variables over intervals of time.

Target systems. Many types of systems are currently developed using software engineering
methodology that is less than adequate in its ability to handle formal modeling and analysis of
complex distributed software, and wc anticipate that several specific types of systems will benefit
from being designed within our proposed framework. The types of systems include:

• Distributed data systems: data collection, management, dissemination: consistent replicated
shared-data systems.

• Communication: group comimmicat ion systems, broadcast and mullJeasl systems with quality-
of-service guarantees.

• Coordination and control: traffic management, industrial process control, automated manu-
facturing systems, transportation (e.g., TCAS, traffic collision avoidance system used in civil
aviation).

Many such syslems involve specialized distributed platforms, such af networks of sensors and
mobile ad hoc networks.

1.2 Summary of project objectives and accomplishments

With the ultimate goal of providing a more complete formal methodology and associated tools to
substantially improve the state of the art in developing software for complex distributed systems,
the project objectives encompassed the following.

Theory and Methodology. In developing service definitions and algor thms for distributed sys-
tems, analyzing the resulting specification, and generating code from speci:ications for such systems.
the results only make sense if they are ultimately based on a sound underlying mathematical model.

VF.ROMODO. Inc. Finul Technical Report FA9n:W-07-C-0iN -5-

Tiiis project uses interacting slate iiiachme models. Standard models like I/O (hipui/Ouipul) au-
tomata and timed I/O automata provide the foundation for the Tempo language that we developed
previously. However, some of the systems require richer models capable of describing complexities
such as probabilistic and conLinuous behaviors. New models for particular kinds of timing and fail-
ure behavior and corresponding analysis methods are also needed. Existing models that handle such
features need to be improved and better integrated. Other extensions are needed to express con-
straints for deploying systems defined in terms of the Tempo language in physical target networks,
and for optimizing deployment over target networks based on various performance considerations.
We collectively refer to these I/O automata models and the languages for system specifications
in these models as Tempo*. In this project we have advanced the theory for such models, in
particular the probabilistic extensions, we have extended the formal framework and methodology
for analyzing system specifications, and deriving distributed code from such specifications, and we
have prototyped languages for specifying complex distributed systems in such models.

Our accomplishments in this area are presented in this report as follows. The probabilistic
and hybrid extensions to the Input/Output Automata framework are presented in Section 3. The
deployment-oriented augmentations of the Tempo framework are presented in Section 5.

Modeling, Analysis, Code Generation, and System Deployment Tools. We performed
research and feasibility studies needed Lo develop computer-aided design tools for analysis of com-
plex distributed systems expressed in the Tempo* formalism and lo prototype such tools on the
basis of the Tempo framework developed previously. New modeling and analysis tools and tool
extensions thai are the result of our work include the following. The laiujuaijc pwecssor is a front
end tool that will accept Tempo* specifications, perform static and type analysis, and produce
intermediate output for use by other tools. The simulator is a tool designed to simulate execu-
tions of Tempo* specifications and to provide linked simulations of pairs of specifications, where
one specification gives an abstract definition and the other is a more concrete specification that is
supposed to implement the abstract definition.

Building on our prior work on code generation for distributed systems, we have explored for-
mal approaches to code generation from Tempo* specifications, and prove theorems about the
correctness of the resulting code. We prototyped tools for mapping Tempo* system specifications
consisting of multiple automata lo target networks subject to distributed deployment constraints
and efficiency and resource cousiderations, e.g., communication bandwidth, storage reqniremeius.

and redundancy for fault-tolerance.
Our accomplishments in this area are presented in this report as follows. An overview of and

our latest refinements to the existing Tempo integrated development environment are presented
in Sections 2 and 4. The tools and trauslaiors for dealing witli deployment problem of systems
specified in Tempo are presented in Sections 5 and (i. In Section 8 we summarize our work on formal
treatment of channel implemeniations as a part of our work towards code generation extensions.

Applications: Evaluations and Feasibility. In order to evaluate the cffcclivcncss, scalability,
and extensibility of our methodology and prototypes, we applied them to model and analyze repre-
sentative systems. Compared to previous altempts to optimize the deployment of interesting sys-
tems we have obtained substantial improvements using our integrated approach with constrained-

programming based solutions.
We present out accomplishments in Section 6 and 7.

VRROMODO. Inc. Final TecUuicai Reporl FA95.r>(l-a7-C-0llt -6-

1.3 Project team and academic partner institution

Tlic project team over the duration of the effort included the following people:

Laurent Michel, Ph.D., System Architect and PI

Kaiicy Lymh, Ph.D., Chief Twtlmica] Officer ami Co-PI

Alex Shvarlsnuui, Ph.D., Project Manager and Co-PI

Carleton Coffrin, Sonior Software Kngincer

Elaine Sonderegger. Graduate Researcher, Development

Dilsun Kaynar, Tempo Consultant

Our academic partner on this project was the University of Connecticut

1.4 Publications

In this section we list puljlicalions directly related to the project that were authored or co-authored
by the project personnel. All publications are available on request.

[Pl| R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N". Lynch, O. Pereira, and R. Segala.
Analyzing Security Protocol Using Time-Bounded Task-PIOAs, juumul of Discrete
Event Dynamic Systems (DEDS), Springer, volume 18, number 1, March 2008.

[P2] Ran Canetti, Ling Cheung, Dilsun Kaynar, Nancy Lynch, and Oliviei Pereira. Modeling
Bounded Computation in Long-Lived Systems. CONCUR S00S, Ccncurrcncy Tlicoiy,
19t.h Intcnuitivnal Cuuferctice, pages 114 130, 2008.

(P3] Chryssis Georgiou, Peter M. Musial, Alexaaider A. Shvarlsman, Elaine L. Soudereg-
gcr: An Abstract Channel Spccihcation and an Algorithm Implementing ll Using Java
Sockets. Procccdinijs of The Seventh IEEE Intcmationol Symijoshtm on Nelworkimj
Conipvliny and Applicalions, NCA 200S, pages 211-219, 2008.

{P4] Daniel Libcrzon, Sayan Mitra, and Nancy Lynch. Verifying Average Dwell Time of
Hybrid Systems. To appear in ACM Tiunsuctions in Einbedded Cottputtny Systems.

[P5] N. Lynch, L. Michel, and A. Shvartsman, "Tempo: A Toolkit for the Timed Inpui/Out-
put Automata Eormalisnv', First Intcmational Conference on Sii ndution Toots and
Techniques for Coninmniadions, Networks and Systems (SIMUToo-s 200S). Industrial
Track: Simulation Works. CDROM, paper 3105, S pages, MarseiDes, Prance, March

4-7, 2008.

[P6] L. Michel, A. Shvartsman, E. Sonderegger and P. Van Hentenryckv "Optimal Deploy-

ment of EvenUially-Serializable Data Services.1'. Procecdinys of the Fifth IntcrnatioJial
Confemnce on Intcyration of AI and OR Tcchntqitcs in Construini Pwyrantminy for
Combinalonal Optimization Problems, CPAIOR 2008.. Paris, France, May 20-23, 2008.

[P7) L. Michel, A. Shvartsman, E. Sonderegger and P. Van Hentenryck "Optimal Deployment
of Evenlnally-Serializable Data Services", Submitted to Annals of Operations Research,
October, 2008.

(The complete bibliography cited in this report is included after the mail, text.)

VRHOMODU. Inc. Final TecUtiical gggort rA<)5.c>(l-il7-C-(nN 7_

1.5 Ackiiowledginents

The work ciescribed in lliis teporl waa Funded by a coulracl from AFOSR. We are grateful u> APOSH
for this support, and we ihank the Program Managers Dr. R. Herklotz and Dr. D. Lnginbuhl for
llieir tuiistruclive guidance and encouragement.

We thank our academic partner for substantial contributions to the success of the project. We
thank all participants listed in the section above for their contributions to the project.

Earlier work on a prototype framework was performed at MiT by Anna Chefter, Stephen
Garland, Dilsun Kaynar, Panayiotis Mavrommatis, Antonio Ramirez, and Edward Solovey.

l.G Document structure

Scclion 2 presents the overall fianicwork at a high level, including tools dcscriplious; ami spcciliea-
lion examples. In the rest of the report we describe in detail the Phase I work and our accomplish-
ments. In Section 3 we describe the advances in extending the formal Input/Output Automata and
Timed Input/Output Automata frameworks to include reasoning about probabilistic and hybrid
systems. In Section 4 we lirst briefly review the architecture of the inlegraled Tempo iramewurk
and focus in section 5.1 on the new annotations related to deploymenl issues. In Section G we
present the translation module responsible for deriving combinatorial optimization models Iroin
Tempo specifications. In Section 7 we discuss the optimizer back-end and illustrate its capabilities
on the deploymeuL of a distributed system (Eventually Seriali'/able Data Services). In Section 8 we
summarize our work on formal treatment of channel implementations as a part of our work towards
code generation extensions.

We conclude in Section 9. Bibliography completes this report.

2 Tempo Toolkit for Timed Input/Output Automata Formalism

Tempo is a formal language for modeling distributed, concurrent, and timed systems as collections
of interacting state machines, called timed input/output automata. Tempo provides natural math-
ematical notations for describing systems, their intended properties, and intended relationships
between their descriptions at varying levels of abstraction. The Tempo Toolkit is an implementa-
tion of the Tempo language and a suite of tools that supports a range of validation methods for
descriptions of systems and their properties, including static analysis, simulation, and machine-
checked proofs. This section gives an overview of the Tempo language and illustrates its utility on
selected examples of importance to distributed computing. The focus of the presentation is on the

Tempo tools. We quickly review the purpose of Timed I/O Automata and TEMPO language 2.1.
the TEMPO toolset (Section 2.2), and briefly review an example in Section 2.3.

2.1 What is the Tempo language?

Tempo is a formal language for modeling distributed systems as collections of interacting state
machines called Timed Input/Ouipitl Aulomalu [13]. Timed Input/Output Automata are often
referred to as Timed I/O Aiilomala, or just TIOAs. The distributed systems in question may have
timing constraints, for example, bounds on the time when certain events may occur, or bounds on
the rates of change of component clocks. They may use time in significant ways, tor example, for
timeouts, or for scheduling events to occur periodically. Timed I/O Automata formalism provides

VFROMODQ. Inc. Filial Tccbnicnl liepon FA9550-(I7-C-(I114 ^8-

good support for describing tlie.se constraints and capabilities. Timed anc nntimed I/O Antoniata
iormalisms liavo hetin effectively used tor specifying nmnerons distributed a id concurrent algoritlnus
[16]. The Tempo language provides simple formal notation for describii g Timed I/O Automata
precisely, based on the pseudocode notation that has been used in many research papers. It also
allows specilication of properties such as invariant assertions and rclatioi ^hips between automata
at different levels of abstraction. The Tempo language is supported by an associated integrated
development environment toolkit, also called Tempo, that provides an extensible framework sup-
porting a range of integrated analysis and validation tools, including static analysis, simulation.
model-checking, and theorem-proving.

Many distributed systems involve a combination of computer components and real-world, phys-
ical entities such as vehicles, robots, or medical devices. Systems iiivohmg interaction between
computer and real-world components usually have strong safety, reliabilhy, and predictability re-
quirements, stemming from Lite requirements of real-world applications. This makes il especially
important to have good methods for modeling the systems precisely and analyzing their behavior
rigorously. Tempo provides a simple, elegant, and powerful nuuhematical foundation for analyz-
ing a wide variety of systems, and it can be used to model both computer and real-world system
compoueuts, as well as their interactions.

Tempo can be used to mode! practically any type of distributed sysUm, including (wired and
wireless) communication systems, real-time operating systems, embedded systems, automated pro-
cess control systems, and even biological systems. The behavior of these systems generally includes
both discrete state changes and continuous state evolution; Tempo is cesigned to express both
kinds of changes.

The Tempo Toolkit was developed by VEROMODO Inc., with support provided by an AFOSR
technology transfer grant. The beta releases of the Tempo Toolkit for LLnux, Windows, and Mac
OS X platforms are available for download at www.veroiuodo.coin.

Bariicr work on a toolkit supporting specification in (unl.iniod) Inpu"./Oul,pul Automata was
performed at the MIT Theory of Distributed Systems group [9]. The prototype toolkit supported
a simulator [6j. paired automata simulation [28], and simulations of composed automata [29].

2.2 Tempo language overview

We now discuss the Timed I/O Automata formalism thai is the basis of Oe Tempo language, and
summarize the capabilities of the toolkit.

2.2.1 Timed I/O Automata

The Timed I/O Automata [13] inathematical framework is an extension of the classical I/O Au-
tomata framework [20, Ifi], which for many years has been successfulK used in the theoretical
distributed computing research connmniity to specify and reason about disitribuLed and concurrent
algorithms. I/O Automata are very simple interacting asynchronous state machines, without any
support for describing timing features. Although they are simple. I/O Atujamata provide a rich set
of capabilities for modeling and analyzing distributed algorithms. I/O Automata support descrip-
tion of many properties that distributed algorithms are required to satisfy, and mathematical proofs
that the algorithms in fact satisfy their required properties. These proofs are based on methods
such as invariant assertions and cuinpositional reasoning. I/O Automata also stipport representa-
tion of algorithms at different levels of abstraction, and proofs of consister cy relationships between

VEROMODO, fac. Final Tbchokal Report FA9550-07-C-0114

al^arilhm rcprcsonlalioiis ftl diffcicnl levels. Uccausc of these capabilities, I/O Automata have
Ijeeit used fairly extensively for modeling and analyzing asynchronous distributed algorithms, and
even for proving impossibility results about compulabiliLy in asynchrouous distributed settings.

However, ordinary I/O Automata cannot be used to describe distributed algorithms that use
time explicitly, for example, those that use timeouts or schedule events periodically. And they do not
provide explicit support for describing timing constraints such as bounds on message delay or clock
rates. Moreover, without support for timing, I/O Automata could not be used for other applications
such as practical conmimncation protocols. These Ihnilations led to the development of Timed
I/O Automata, which include new features—-most notably, Imjccioncs—Specifically designed for
describing timing aspects of systems.

Like ordinary I/O Automata, Timed I/O Automata are simple interacting state machines and
have a well-developed, elegant theory, presented in [13]. Like I/O Automala. Timed I/O Automata
provide a rich set of capabilities for system modeling and analysis. Methods used for analyzing
timed I/O automata are essentially the same as those used for ordinary I/O automata: invariant
assertions, compositional reasoning, and correspondences between levels of abstraction.

2.2.2 The Tempo language and tools

I/O Automata and Timed I/O Automata are fine mathematical modeling frameworks for dis-
tributed systems and have been used, by hand, to describe and analyze distributed algorithms,
communication protocols, and embedded systems. Yet, computer support could make these tasks
quite a bit easier. The Tempo Language and Toolkit is an attempt at providing a broad set of tools
to support these activities.

The Tempo toolkit contains tools to support analysis of systems. These include a compiler that
checks syntax and perform static semantic analysis; a simulator to produce and explore execution
traces for an automaton; a translation module to the UPPAAI. model-checker [14|; and a translation
module to the PVS interactive theovem-prover [27). The overall architecture of the Tempo toolkit
has been designed to facilitate incorporation of other validation tools in the future.

The Tempo language has a rather minimal syntax, which closely matches the simple semantics
of the Timed I/O Automata mathematical framework. In fact, the mapping between a Tempo
automaton description and the Timed I/O Automata that it denotes is pretty transparent. For
example, an automaton's discrete transitions and continuous evolutions are described directly in

Tempo, by 'transitions^ and 'trajectories", respectively. The minimality of the Tempo language
does not limit its expressive power: Tempo is capable of describing very general systems of Timed
I/O Automata. Of course, many analysis tools—especially automated ones like model-checkers —
are not capable of handling fully general Tempo programs. In contrast with the conventional
approach taken by developers of automated toots, Tempo does not outright limit the expressive
power of the language and opts instead for the definition of sublanguages that are suitable for use
with particular tools.

2.3 An Example: mutual exclusion algorithm

To illustrate the capabilities of Tempo and its simulator, we will be using the Fischer Timed Mutual
Exclusion Algorithm. U has become famous as a standard test example for formal methods for
modeling and analyzing timed systems. An informal description of the example appears hi [Ui],
Chapter 24.

VEROMODQ, Inc. Fimtl Tecltniail J?epoit lrA<)55l 1-07-Z'-0114 -10

2.3.1 The Tnmpo s[)«*:ifi<:ati()n

This example Ulustrates most of Lhe basic constructs needed for wrlUeg a Tempo program for a
single Timed I/O Automaton modeling a sliared-memorv syslem. The e> unple also demonstrates
how to express hivaiianls using Tempo, including invariants thai involve lime,

The Tempo model shown in Code I and 2 descrihes the entire syste: i as a single Timed I/O
Automaton. The vocabulary section declares the data types used in thl algorithm, namely, the
abstract data type ptveess and the program counter abstract data type PcVatuc (an eimnierated
type) to represent the exact location of each process in its program. Eac i process could be in its
remainder rojion (program counter = pcrem), where it is not engaged in trying to enter the critical
region. Or, it could be about to test, set, or check the turn variable. C:, it could be in various
stages of entering or leaving the critical region the model uses separate p ogram counter values to
represent situations where the process has successfully completed the trying protocol, where it is
actually in the critical region, where it is about to reset the turn variable ipon leaving, and where
it has successfully completed the exit protocol.

The actual automaton description begins with the name of the autom.non, with formal param-
eters Lchcck and iusvt. These are real numbers representing, respectively, a lower bound on the time
between setting and checking, and an upper bound on the time between checking and setting. The
where clause spcdlics restrictions imposed on the paramclors saying (mo£E important l>) that u~set
must be strictly less than Lcheek. The automaton imports the vocabulaiy to make its definition
available lo the remainder of the specificatiou.

The automaton's signature, describe its actions. Actions are. ciassif ^d as input, output, or
internal. Here, no input actions are used, i.e... the system is "closed". Snce the entire system is
being modelled by a single automaton, each type of action is parameter-/ed by the uaine of the
process that performs il. In this model, the internal actions are associe ed with shared-variable
accesses—the steps that test, set, check, and reset the lum variable. The Dulput actions are those
that mark processes' progress through the various high-level regions of the r code; The ti-yii) action
describes process i moving from its remainder region to its trying rcqio:,, in which it executes a
protocol to try to reach the critical region. The crH{i) action describes 3assage from the trying

region to the critical region, and the cxH.{\) action describes passage from ,he critical region to the
exit region, where process i performs its exit protocol. Finally, the rem(i) action describes passage
from the exit region back to the remainder region.

The automaton's state is Kpecified in the states section. The shares variable tern has type
Null[;'ro<xs,s], which indicates that its value can either be a process or the special value nil to
indicate the absence of value, tarn is initially set to nit. The variable pc represents the program
counters for all of the processes in an array of PcValuc indexed by processes. Initially, all of the
program counter values are set to pejran, which means that all of the processes start out in the
remainder region.

The remaining three variables are introduced solely to express the Deeded timing constraints.
First, the variable nouns used to represent the real time. It is initialized St 0.

Second, the variable lasLsct is an array containing absolute real time i 3per bounds {deadlines)
for the processes to perform set actions. A deadline will be in force for a process t only when its
program counter is equal to pc.se/, thai is, when it is in fact ready to set the tern variable. !n this
case, the value of lasl.scl\i] will be a nonnegative real number: otherwise, that is, if the program
counter is anything other than pc.se/, the value will be oc, representing he absence of any such
deadline. The elements of the tasi.scl array are defined to be of {.ypeAu-mentcd/icai. a type that

VEROMODO, Inc. Final Tedmical Report FA9550-Q7-C-0114

vocabulary fischer.types
types process,
PcVatue : Enumeration [pcrefn, pctesl, pc.sct, pecheck,

pc.lcavctry. pecrit, pcreset, pc_/eauecii(]
end

automaton fischer{Lcheck, uset Real)
where u.set < {.check Auset >0 ALcheck >0
imports fischcvAypes

signature
output /rif(i: process)
output cnY(i; process)
output cxtf(i: process)
output neni(t: pi-ocess)
internal (cs((i: process)
internal sct(t: process)
internal c/iccfc(»: process)
internal rese((i: process)

states
(um; Null(process) : = nil,
pc: Arrayfproccss, FcValue] : = constanf{pc-rem);
now. Heal: = 0;
last-set: Array (process, AugmentedRea(\ : = consian/^oo);
jirsLcheck Array[proccss, Discreteliea^ : = cons(ani(0);

transitions
output iry{i)

pre pc[i] =pc,reTn;
eff pcji] : = pcJesf;

internal tesl{t)
pre pc[tj =pc_(es(;
eff if (uni =ni/thcn

pc[i] : = pc.se(;
/as/.sc/[il : = {now + u.se/);

fi;
internal sct(i)

pre pcji] =pc.set,
eff (unt: = em6crf(j);

pc[il : = pcdieck,
UsaLavM : = oo;
first.check\t\ : = now + Lcheck:

Code I: Tempo spec, of the Fischer algorithm (I)

VEROMODO, [iic. Final Technical Report FA9550-07'C-0114

internal chccHi)
pre pcfi] —pecheck f\firftLcheck[ii\ <nouT,
off if (um =cmbed{i) then

peji] : = pc_/cai/e(»y,
else

pc[i] ; = pctesi;
fi.
firai-chec^ : = 0;

output cn((i)
pre pc[i] =pcjeavetnf,
off pc[t) : = pc.crit,

output exil{\)
pre pc[il =pc.cTit;
eff pc(i] : = pcrwef;

internal resal^i)
pre pc[i] =pc-reset^
eff pc[i] : = pcJeaveexit;

lum : — nt(;
output rcm(i)

pre pc[i] =pcjeaveexil;
off pc[ij : = pcrem;

trajectories
trajdef Iraj

stop when
3i: process {now =lasLset[t\),

evolve
(i{now) =1;

Code 2: Tempo spec, of the Fischer algorithm (I")

VEKOMODO. Inc. Final Tedmical Repori FA9550-07-C~0U'} -13^

includes all (positive and negative) real innnbers. plus two values cor res ponding to positive and
negativo infinity. Initially, since none of the program counters is pc_se(, the values in the array are

alt oo.
Third and linally. the variable fmt.chcck is an array containing absolute real time lower bounds

(curliest limes) for the processes to perform check ucUvns, when their program counters are equal
to pc.check. The elements of yirsf.c/iect are of type Disavteileal, which meajts that they always have
Heal values, and moreover, they do not change between discrete actions.

The detailed descriplion of the transitions of the aulomalun follows in the transitions section.
TVansitions are (state, aclion, slate) triples. The transitions are described in yuarded counimnd
style, using smatl pieces of code called timisition definitions. Each transition definition denotes a
collection of transitions, all of which share a common action name.

Each transition has a name, list of parameters, a pncoudUion that indicates when the action is
enabled and finally, an effect clause that describes the changes to the state when that accompany the
action. Input actions are always enabled, reflecting the assumption that Timed I/O Automata are
input-enabled. Notionally, input actions have no preconditions, as a shorthand for the precondition

being true.
The tt-y{i} transition represents an entrance by process i into its trying region. The transition

is allowed to occur whenever pr\i] =pc,rcm, that is, whenever process i is in its remainder region.
The effect is simply to advance the program counter to pc.tcsl to indicate that process t is ready to

test the turn variable.
The tc'st(i) transition represents process i testing the (urn variable. It is allowed to occur when-

ever pc[i] =pcjcsl. The transition can either find the turn variable equal to rul at which point it
moves to take the turn (by setting the program counter to pc.set) and saves in (a5/.5e([t] the deadline
for the set action to occur at the latest in ti.sc(time steps in the future (away from vow). The
transition can also find that lurn is not nil and simply lakes no action to remain in the state, ready

to test again.
The sct(i) transition represents process i setting the turn variable to its own index. Tins is

allowed to occur whenever pc[i] =pc.sel. The effects are given as straight-line code in which process
i simply sets torn to its own index (the embed call is necessary to store the value into an object
of type Nul![process]). The code then sets the program counter to pceheek to enable the check{i)
transition thai will verify the tum variable. Now that the sct(i) aclion has occurred, the lasl.sct\i\

deadline is reset to its default value, oc. The code also records the earliest time when process i
could recheck the torn variable based on the current clock new and the lower bound Lcheck.

The chcck(i) transition is enabled when process i'a program counter is set to pcchcck and its
earliest checking time has passed {firsl-check{i\ <iw\i:). When the transilion executes, two interesting
cases may arise: If process i finds that (urn is still equal to i, it leaves the trying region and enters
the critical region. On the. other hand, if it finds the torn variable equal to anything else, it gives
up the current attempt and goes back to the testing step. In either case. }irsi-che.ck[{\ is reset to its
default, 0.

The subsequent transitions are quite straightforward. A cn^(i) transition represents process i
moving into the critical region, and an e.xU{i) transition represents process i leaving the critical
region. A rcsei{i) transilion represents process i resetting the Cam variable to its default value m7,
and a rem(i) transition represents process i returning to its remainder region.

The final part of the automaton description is the set of trajectories, that is, the functions from
time to states thai describe how the slate is permiUed to evolve between discrete steps. This model

VrnuMoDCh Inc. Fm;i/ Technical /?epaii FA9550-07-C-01N M_

spmlics one trrtjoclory dclinition, named trog. This tleiinition describes .lie evolution of the state
in a way thai aHowed the current Lime BOW to increase at rate 1. All of the other state variables
arc of types that arc defined to be discrete: these, by default, arc not .dtowed to change during
trajectories. The stop when condition says that a trajectory must stop f the slate ever reaches a
point whore the current time nmo is equal to a specified deadline /as/.5c/[], for any r. That is, time
is not "allowed to pass1' beyond any deadline currently in force.

This stop when condition is an example of a phenomeuoii whereby an autumaton can prevent
the passage of lime. This may look stiauge (at first) to some prograi micrs. since programs of
course cannot prevent time from passing. However, appearances can be Jeceiviug and the Fischer
aiaoniaton is not exactly a program; it is a descriptive model that expresses both the usual sort of
behavior expressed by a program, plus additional timing assumptions that might be expressed in
other ways.

2.3.2 Properties of the algorithm

Tempo can be used to describe not just algorithins, but also properties that we would like the
algorithms to satisfy. For example, the Fischer algoriUnn is supposed to stlisfy the riiuluni excluskm
property, saying that no two processes can simultaneously reside in their critical regions. This is a
claim that the mutual excliLsion is an invariant of the Fischer algorithm, that is, that it is true in
all reachable slates of the Jisehar automaton. This claim can be expresseJ in Tempo with a block

invariant of fischev.
Vi: process V): process

(i ytj ^{pc{i\ /pccn"(Vpc^l ^pccril));

This invarianl delinilion claims that, in any reachable state oi the automaton, any two processes
cannot simultaneously be in the critical section. This formal statement must, of course, be verified
with a tool in order to fonnally prove that the algorithm is correct. For nstance, one could use an
interactive theorem prover such as PVS, a model-checker like UPPAAL, or run simulations of the
protocol and require the simulator to check the assertions after every single step of the simulations.

In the next sections we describe the Tempo language and integratec development framework,
and their design in more detail, and we describe the work carried out in Phase II.

3 Extensions of I/O Automata and Timed I/O Automata Frame-
works

We have continued our work on mathematical foundations for model.ng and analyzing limed,
hybrid, and probabilistic systems. We have been pursuing an effort to extend Timed I/O Automata
to allow probabilistic behavior even before the start of Phase I work, resulting in several papers,
e.g., [23. 25, 19|. In an extended series of case studies, we have alst been using probabilistic
(F10A) and timed I/O automata (TIOA) to model and verify security piotocols. This has entailed
extending the formal foundations in several directions, to restrict possib lities for nondeterininism,
to define appropriate implementation relationships for the security settii g, and to integrate timing
into security models.

VEBOMODO. Inc. Fiuai Technical Report FA955O-07-C-0U4

3.1 Probabilistic extensions

Our recenl. work investigated the tinie-bouiKled lask-PIOA modeling franiework, an extension of
the probabilistic input/output automata (PIOA) framework that can be used for modeling and
venfying security protocols. Time-bouuded Uisk-PIOAs can describe piobabilistic and noitdeter-
ininistic behavior, as well as tiinebounded computation. Together, these features support modeling
of important aspects of security protocols, including secrecy requirements and limitations on the
computational power of adversarial parties. They also support security protocol verification using
methods that are compatible with less formal approaches used in the computational cryptography
research communiLy. We illustrate the use of our franiework by outlining a proof of functional
correctness and security properties for a well-known oblivious transfer protocol. These results
appeared in print in 2008 [4].

We also introduced the notion of approximate implementations for Probabilistic I/O Automata
(PIOA) and developed methods for proving such relationships [24]. We employ a task structure
on the locally controlled actions and a task scheduler to resolve nondeterminism. The interaction
between a scheduler and an automaton gives rise to a trace distribution a probability distribution
over the set. of traces. We define a PIOA to be a (discounted) approximate implementation of
anothci PIOA if the set of trace distributions produced by the first is close to thai of the latter,
where closeness is measured by the (resp. discounted) uniform metric over trace distributions. We
propose simulation functions for proving approximate implementations corresponding to each of
the above types of approximate implementation relations. Since our notion of similarity of traces
is ba^ed on a metric on trace distributions, we do not require the state spaces nor the space of
external actions of the automata to be metric spaces. We discuss applications of approximale
implementations to verification of probabiliHtic, safety and termination,

3.2 Extensions for reasoning about security protocols

In another recenl development, we investigated a new paradigm for the analysis of long-lived security
protocols. We allow entities to be active for a potentially unbounded amount of real time, provided
they perform only a polynomial amount of work per unit real time. Moreover, the space used by
these entities is allocated dynamically and must be polynomially bounded. We proposed a key
notion of loug-tenn iuiplemenlalion, which is an adaptation of computational indistiuguisliability
to the long-lived setting. We show that long-term implementation is preserved under polynomial
parallel composition and exponential sequential composition. To illustrate the use of this new
paradigm, we analyze the long-lived thnestamphig protocol of Haber and Kamat. This work was

submitted for publication in 2008 [5]

3.3 Extensions for hybrid systems

We completed our work on a journal paper on average dwell time for hybrid systems [15]. Average
dwell time (ADT) properties characterize the rate at which a hybrid system performs mode switches.
In this paper, we present a set of techniques for verifying ADT properties. The stability of a
hybrid system A can be verified by combining these techniques with standard methods for checking
stability of the individual modes of A. We introduce a new type of simulation relation for hybrid
automata switching simulation for establishing that a given automaton A switches more rapidly
than another automaton D. We show that the question of whether a given hybrid automaton has
ADT a can be answered either by checking an invariant or by solving an optimization problem. For

Vl-RoMODO, Inc. Fimil Tcclinicitl Report FA0550~(l7-C-(lll-i

classes of liybrid iiuloinala for wliicli ii^'arianls can be checked auLomal cally. the invariaiil-biisoci
method yields an auLomalic utelhud for verifying ADT; for auLomata Mat are outside this class,
the invariant has to be checked USHtg inductive techniques. The optimization-based method is
automatic and is applicable to a restricted class of initialized hybrid auloniata. A solution of the
optimization problem either gives a counterexample execution that violates the ADT property, or
it confirms that the automaton indeed satisfies the property. The optimzation and the invariant-
bused methods can be used in conibhmtion to find the unknown ADT of ;: given hybrid automaton.

We developed a new abstraction technique, event order abstractio i (EOA), for parametric
safety verification of real-time systems in which "correct orderings of events" needed for system
correctness are maintained by timing constraints on the systems1 behavio- [32]. By using EOA, one
ran separate the task of verifying a real-time system into two parts: I. Safety property verification
of the system given that only correct event orderings occur; and 2. DerivUion of timing parameter
constraints for correct orderings of events in the system. The user first identifies a candidate set of
bad event orders. Then, by using ordinary untuned model-checking, the user examines whether a
disrretized system model in which all timing constraints are abstracted away satisfies a desirable
safety property under the assmnption thai tin; identified bad event oiders occur in no system
execution. The user uses counterexamples obtained from the model checker to identify additional
bad event orders, and repeats the process until the model-checking succeeds. In this step, the user
obtains a suliieienl set of bad event orders that must be excluded by timing synthesis for system
correctness. Next, the algorithm presented in the paper automaticalW derives a set of timing
parameter constraints under which the system docs not. exhibit the identified bad event orderings.
From this step combined with the untimed model-checking step, the user obtains a suflicient set
of timing parameter constraints under which the system executes correctly with respect to a given
safety property. In our documented work we illuslrated the use of EOA with a train-gate example
inspired by the general railroad crossing problem. We also summarized three other case studies, a
biphase mark protocol, the IEEE 1394 root contention protocol, and the Fischer mutual exclusion
algorithm.

4 Tempo Toolkit: Architecture and Language

The Phase II STTR [18j completed in 2007 produces a solid implementation of the TIOA language
in the form of a toolkit: TEMPO. VEROMODO focused on a redesign of the core implementation
of the front-end (analyzer and compiler) and a design of its interfaces o the various back-ends.
TEMPO has the following characteristics

• It is a Java 1.5 implementation of a refined TIOA language.

• It offers a modular design to facilitate the integration of additional tjols as indepeudent back-
ends, (e.g., the PVS translator, the simulator or the model-checkei). It is based on modern
modular architecture where each back-end tool is a plug-in that can be loaded at runtime to
extend the compiler.

• U features a fine-grained interface to communicate with back-end tools that would make it
possible to establish a one-to-one correspondence between each back-end tool and the TIOA
abstractions offered by TEMPO.

VRROMODO, Inc. Final Teclmical Report FA95SQ47-C-0114

• II oilcvH a licxiljlc inicgratioii wivli Ihc back-ends thai lei eacli back-end independently re-
fine the semantic roles to either augment the core language with back-end specific language

extensions.

4.1 The Architecture of Tempo

Figure 1: TEMPO'S architecture

TEMPO'S architecture was designed and developed by our academic partner Laurent Michel
(University of ConnecticuL). and it ts based on a modular multi-stage compiler. The overall
organization is shown in Figure 1. The first two compiler stages are fixed and independent of the
selected back-end tool. The third stage depends upon tlte selected tool and is loaded autoiualically
from a JAVA shared library (JAR file) based on the user selection at the conunand line or in the
user interface.

The initial stage is responsible for the lexical and syntactic analysis of a TEMPO spocificatiou. It
assembles its input from one or more text fdes containing the specifications as well as one or more
vucabuluiies. A vocabulary is a TEMPO specification containing built-in abstract, data types lor
commonly used data structures such as sets, multi-sets, maps or arrays1. Lexical and grammatical
errors are reported immediately. The parser is written with a state-of-the-art freely available parser
generator: ANTLR v2.7.x2. The output of this phase is an abstract syntax tree that is passed down
to a second analysis stage.

The second stage focuses on the semantic analysis of tlte specification. This phase performs
multiple passes (traversals) of the AST to analyze it.

From a high-level standpoint, the semantic analysis applies a collection of validation rule to
each node of the abstract syntax tree. Each rule take the form

P{n)=>oi, ,9k

i dcHiK- thu 'Us

2ANT[,R v2 is availaljlc from http://'

iuiditioiittl vofctljuliUiL-s which are imli^tiiiguisliabii.' fruni TE-;MPO'y own hmlt-in vocab-

tlr2.oi-g/

VKROMODQ, Inc. Fiiuil Technical Hcporl FA955()-07 C-01 l-i 18

where P is a boolean pvedicate on the subtree rooted al n that delermiiies wlielher the rule is
applicable and (ji Uirou^li g^ are aclions thai, transfonn, annulale. or possibly tag the tree as
semanlically uiisomtd. Each back-end can add a set of validation rules that capture additional
requirements on the AST to comply with its limitations. For instance, if a back-end cannot operate
on expressions containing qitanlifuTS (V or 3), it can add a rule

class{n) s ASTForull V class{n) = ASTExist

=> rcjccl.{ii, "The hack-end xyz does not sup[)ort qnantifers in expressions")

that the semantic analysis will apply inductively (alongside all the other rules) to all the nodes of
the abstract syntax tree.

4,2 Tempo language

The TIOA formalism and associated theory is defined in the monograph produced and published
as a part of this project [13]. We refer the reader to the monograph for the detailed informatiun
about the TIOA formalism, and modeling and analysis methodology.

The TIOA language was refined during the implementation of TnMPO to take into account
standard user expectations and to produce an implementation as uniform as possible. The T^MPO
language itself lias a minimal syntax, which closely matches the simple semantics of the Timed I/O
Automata mathematical framework. In fact, the mapping between a Tempo automaton description
and the timed I/O autoinalon that it denotes is pretty transparent. For distance, an automatons
discrete transitions and continuous evolutions are described directly in Tenpo by ■'transitions" and
"trajectories", respectively. The ininimality of the language does not li nit its expressive power:
Tempo can describe very general systems of timed I/O automata. Of course, each analysis tool
brings its own computational limitations, and Tempo accommodates tl em with the addition of
fool specijic restrictions (captured through the predicate mechanism described above.) to define a
suitable sublanguage.

5 Deployment Problems

This section reviews the deployment phase that arise when constructing a distributed systems. We
discuss our prior work in the area, then present the language extensions leeded to convey the key
characteristics of deployment instances, and illustrate an application of our framework in specifying
a meaningful sample deployment problem.

Our earlier work on deploymeut of distributed systems was done in the context of an architec-
tural specification framework called the Zs (2, 1]. Z5 uses five levels of abstraction, called fnterface.
Implementation, Integration, Instantiation, and Installation, to describe the hardware and soft-
ware structures of distributed systems. Deployment of software compo lents to hardware nodes
takes place at the Installation level using information gathered at liighe- levels. Z8 does not in-
corporate specification of component semantics, and wc explored the use of the. I/O Automata
language in [1] to complement the. structural specifications in Is. Specification of systems in Zs

can be done using UML, but it is not supported by an integrated development environment. The
deployment optimization was performed using customized techniques based on binary integer pro-
gramming and genetic algorithms [3]. Our current work on deployment op imization in TENfPO is in
part motivated by Is. By contrast, TEMPO provides an integrated develcipment enviroument that

VEROMODO, lac. Final Technical Report FA95BO-O7-C-0114

incorporaies both stinciural system descriplions and syslem sonumtics, and allows for automatic
generalion of deploymeiiL mappings using advanced conslraint-programming leclmiques.

5.1 Augmenting Tempo with deployment annotations

The Tempo deployment annotations, if any, are part of the definition of a composite automaton.
The composite automaton is the only portion of a TIOA model whicli has multiple cotnpuueuts.
and it is these component parts which potentially could be deployed to different computing nodes.

The simple composite automaton in Figure 2 illustrates the required deployment annotations.
(Section 5.3 has a more realistic example using an Eventually Serializabte Data Service (ESDS) [8,
7|.) Our example composite automaton consists of two types of components, A and D- Aulumaton
A has two output transitions, a send transition that specifies both a message to be sent and ihe
klcntiher of its destination, and a gossip transition that spailics data to lie broadcast. Automalon D
has the two matching input transitions. For simplicity, the state and transition details for automata
A and B have been omitted. The composite automaton C has two instances of autoinaton A, called
ol and a'2. and three instances of automaton D, called 61, b'2, and 63.

automaton A
signature

output send{»i : String, id : Nat)
output gossrp(rffl?((: Array(Nat.Nat])

states
transitions

output send(n!, iri)
output goss\p(data)

automaton lJ{id : Nat)
Signature

input send{7fi : String, const id)
input gossip{dala : Arr3y(Nat, Nat|)

stales
transitions

input send(m,irf)

input gossip(rfQ(a)

Figure 2: Simple composite automaton with deployment annotations

The deployment annotations begin with the keyword deployment and contain, at a mininmm, a
list of the computing nodes, the physical connections among those nodes, and a description of the
communication patterns of the composite antomatoirs components. The list of computing nodes
begins with the keyword nodes and is followed by the list of all the computers in the network,
namely nl, til, n3, and n4. In tins example, node nl is directly connected to ^2, and nodes ri2,
u3, and ;(4 are directly connected to each other by a common connector. This is denoted by the
deployment section beginning with the keyword connections and containing, for each set of directly
connected nodes, a list of the individual nodes, separated by commas and enclosed in braces.

The last deployment section in this example begins with the keyword communication and lists
the relative frequencies with which each of the transitions of the composite automaton occur. For
each transition, the component which generates the transition as an output transition is listed

automaton C connections
components {"1,"2}-,

nl i A; {n2,7i3,n4};
al-.A:
H : U{1): communication
la : B(2)i (il.gossip -> M,fc2,63 freq
M: ii(3); u2.send -> M freq 10;

fi2.send -> M freq 2;
deployment

nodes
nl;
-.2;
n3;
n4;

Vr.HOMODO, Inc. Final Tecluiicn! Report FA955()-07-C-(fn4

iirst. followed by a period, tlic name of Uic Iransition, the syinbol ->, and the names of all the
components which receive this transition as input The list of input co. iponents are followed by
the keyword freq and an expression for the relative Trequency of the transition. Each frequency
expression is interpreted as the number of times the transition occurs during some time period
ot unspecified length, where it is assumed that the same time period is used in dotermining the
frequencies for ail the transitions. Here, component «1 broadcasts its gossio message to components
61, b2, and 63 with a relative frequency of 5 while «2 outputs its send lessage to component b3
with a relative frequency of 10.

Figure 3 enhances our example composite automaton with some of the optional deployment
constraints. The first constraint, beginning with the keyword support, Bfecifies which components
may run on which nodes. In our example, node ?il supports compomnts (il and (i2. node nl
supports all the components, and nodes u'i and u4 support componercs 61, fr2, and h'i. It no
support section is provided in the deploymenl annotations, every compc tent may be deployed to
every node.

automaton C
components

al : A;
fl2; A;
61 : 13:
02: B,
b-i:B\

deployment
nodes

nl:
7i2;

n3;

connections separated
{tll,n2); (cil,<l2);
{n2,ri3. FI4); (H. 62,43)

support together
nl <- nl.aS, {(il.U);
n2 <- all;

n3<-W,M,M; communicati'm
n4 <- M,62,Mi rtl.gossip -' bl,b2.ii3 freq 5;

a2.send -> i3 freq 10;
fixed Q2.send -> bl freq 2;

112 <- 111;

Figure 3: Annotations for deployment constrain- =

The fixed section lists each component which must be deployed to :i particular node. Once
again, a statement of the form x <~ y means that component y must be assigned to host x.

Reliability and fault-tolerance consideration may require that some groups of components be
separated or co-located. For instance, data replicas should be hosted on ditfeient nodes while tightly
coupled modules (a communication channel and its replica) should be co-located for cfiicicncy
reasons. The separated and together sections can be used to specify these requirements and define
lists of sets of modules. In our example, components «1 and a2 must be assigned to distinct nodes,
components 61, 62, and 63 must be assigned to distinct nodes, and components (il and 61 must be
assigned to the same node.

Figure 4 illustrates more advanced deployment annotations. The first of these is the constants
section, which allows the user to name literals1 used within the specification. Components often
will "pass through" some messages, possibly recording information from Ll.e messages in their state.

It is convenienL to specify these common message frequencies using consLants. In our example, /I
is declared to have the value 5, and /2 is declared to have the value 2. Then /I and /2 are used

3Ciirrcii(Iy only uf type Nat.

VF.ROMODO, In Final Techu'tca} Report FA955(i-07-C-OU-!

bo sijecify the relative frequencies of llie Lhree tvitnsitions in the communication section.

automaton C
components

(il : A:
(,2 : A:
IA : B\
b2: D;
63: ZJ;

deployment
constants

/I : Nat:=5;
/2 : Nat := 2;

node types
JJC. sim;

nodes
nl : pc\
n2;
ri3 : sun;
n4 : smi;

connections
{ril,n2} bandwidth 25;

{n2,sim};

equivalent
{..3.n4}:

Support
nl <-«l,fl2;
nl <- all;
.still <- 61,62,63:

communication
ol.gossip -> 61,62.63 freq /I;
n2.send -> 63 freq /I + /2 msgSize 4;

fl2.send -> 61 freq /2 msgSize 8:

Figure 4: More advanced deployment annutations

Node types represent groups of nodes with the same capabilities. Any wliere a group appear in a
specification, the node typo may be used instead. The node types of a deployment musl be declared
with the keywords node types followed by comma-separated list of node names and terminated with
a semicolon. Our example declares two node types, pc and Sim. Node Til is of node type pc, and
nodes fi3 and n4 are members of 5im while node it'2 has no node type. Whenever pc appears in the
specification, it is replaced with node nl, and whenever sun is used, it is replaced with nodes n3
and TJ4. For instance, the connection among nodes n% n3, and TI4 may be specified U {n'i.sun}.

Some groups of nodes are completely equivalent, in that they support the same set of compo-
nents and are connected to other nodes in an equivalent manner, Specifying that these nodes are
equivalent enables the opimizcr to be more efficient. The sots of equivalent nodes are listed in the
equivalent section. In our example, nodes n3 and n4 are equivalent.

In some applications the amount of data transmitted with each transition is essentially the same,
but in other applications the amount of data transmitted varies from one transition to another. The
deployment annotations allow the size of the transmitted data to be specified for each transition.
The optional stanza msgSize expr may be added to each trnusition listed in the communication
section. Each message size expression is interpreted SB a multiplicative factor of an nnspecilicd mh(
of transmitted data. In our example, the gossip messages from componeut nl to components 61,
62, and 63 are of size 1, the send messages from component a2 to component 63 are of size 4, and
the send messages from component ((2 to component 61 are of size 8.

A connection may have a bandwidth limitation. This is specified by appending the stanza
bandwidth expr where the expression specifics the maximum baudwidlh for the set of nodes in the
corresponding connection. The bandwidth expression is interpreted as the maxhmnn amount of
data which may pass through the connection during a time period, expressed as a factor of a unit
of transmitted data. The implementation assumes that each transition uses a single path for data

transmission. In our example, the connection between nodes nl and n'l has a maximum bandwidth
of 25.

5.2 Language Extensions for Deployment Annotations

Deployment annotations are added to the Tempo language as an optional extension to the defini-
tion of a composite automaton. The deployment specification begins with the keyword deployment

VI-ROMODO. tec. gfggj Techninil Report FA955()-()f-C-01N -22-

composadAutomatou ■.i = romponenls liidilfnAclionSelx? compSchedute? deplo^meiil?

deployJiteiU ::= 'deployment' constaiils? iiode'I\ipcsf nodes
coinicrlioiis cquivakntl couslmiiil* communicction

constants ::='constants' {coiislanl ;) +
constant •.■.=ID : lypelicf := cxpr

jiodetypcs ■.-.^'ncide' 'types' nodcTypc. {, nade'type)* ;
nodcType ::=ID

nodes ::='nodes' (node ; }-f
fi<j(/e::=ID ([varList{. varList)*])? (: nodeTypc)"! deployWhcrvl

connections :'^='connections' ({ nodeSpecList } ('bandwidth' cxpr)? ;) +
e^/iiiwi/cfi/:;='equivalent' ({ tiodrSper.LisI } |) +

constmint ;: = siippor/
[together
| separated
I fixed

support ::=*support' {nodeSfiec < - ('all' | compSpecList);) +
(oye//ier ::='together' ({ compSpecList } ;) +
scpnm/Cf/::='separated' ({ compSpecList } ;)-+•
Jixed ■.:='fixed' {ttodclnstance < - comphislance ;) +

communicfition ::='comaiunication' comwSpec +
commSpcc ::='fQt' ID 'in* INT . . INT 'do' commSpec + 'od'

| commTransitio/t
comniTSxinsiliou •.:=compl}nnsition - > compSpecList 'freq' cipr ('msgEize' erpr)? ;
compl)-ansition ::=compInstance . ID ((expr(, expr)*))?

nodeSpecList ::=nodeSpec (, nodeSpec)*
nodeSpec :: = nodeIuslance deploy Where!

| nodcTypc
nodeln stance •.■.=\\) {{ cipr{, expr)*])?

compSpecList :: — compSpcc (, compSpcc)*
compSpec ■.■. = compInstance deploy Whcret
comphislance v.^Wi {[expr{. expr)*])?

dcptoyWhcrc ::='where' pai-amliangc (A parnmRanf/c)*
paimnltani/e :: = ID '\in' INT . . INT

plainOp :\=as before j . .
expr ::—as bcfoio | pipr (. . expr)-+-

Figure 5: EBNF Grammar fragment for deployment expressions.

VEUOMODO, Inc. Final rcdmicul Report FAimO-OT-C'Oli-l -23

lollouctl by oplional constants and node types spccilicaUons. required nodes and connccLioiw spec-
ifications, optional equivalent nodes and constraint specifications, and a required coinmunication
specification. The components to be deployed to a network are the component parts of the com-
posite automaton.

The constants specification, il present, begins with the keyword constants followed by one or
more declarations of constant variables. Each declaration begins with an identifier, corresponding to
the name of the variable, followed by a colon, the data type of the variable, the assignment operator
:=, the value of the variable, and a semicolon. The scope of a constant variable declaration is the
body of the deployment specification. As the name implies, the value of a constant variable cannot
be changed. Constants may be used in expressions to specify bandwidth limitations of connections
and frequencies and message sizes of connnunicating transitions, for example

The node types specification, if present, consists of the keywords node types, one or more
identifiers, separated by commas, and a semicolon. Each identifier is (lie name of a node type,
which is just a shorthand name for a group of nodes. A node may belong to at most one node type.

The mandatory nodes spedficatioii identifies the host computer nodes onto which the Tempo
components are to be deployed. It begins with the keyword nodes followed by one or more node
declarations, eacli ending with a semicolon. Each node declaration begins with an identifier, cor-
responding to the name of the node, and a list of its parameters, if any. separated by commas and
enclosed in square brackets. Each parameter specification consists of an identifier, correspuiuhng
to the local name of the parameter, followed by a colon and its data type. If multiple, adjacent
parameters are of the same data type, their identifiers may be separated by commas and followed
by a single colon and their common data type. After the node name and parameters, there is an
optional node type designation, consisting of a colon and the identifier of the node's type, and an
optional where clause.

A node's where clause specifies the ranges of values for the node's parameters. It begins with
the keyword where, followed by one or more parameter range specifications, separated by the AND

operator A, and ends with a semicolon. Each identifier used within the node's parameter specifi-
cations must have a corresponding parameter range specification in the where clause consisting of
the identifier, the keyword \in, and the integer lower and upper bounds for the identifier's values.

separated by two periods (. .).
The mandatory connection section itemizes the hardware comnmuication links in the network,

be they simple communication cables connecting two nodes or Ethernet cables or switches connect-
ing multiple nodes. The section begins with the keyword connections and contains, for each link,
the list of directly connected nodes, separated by commas, enclosed in braces, and terminated with
a semicolon. If a link has limited bandwidth, that is specified, after the closing brace but before
the terminating semicolon, with the keyword bandwidth followed by a measure of the limited ca-
pacity. If DO bandwidth is specified for a link, it is assumed that the bandwidth of the connection
is sufficient to be considered unlimited for the purposes of deployment.

For each connection, each node specification consists of an identifier, corresponding to the name
of the node, and a list of its parameters, if any, separated by commas and enclosed in square brackets.
An optinnal whore clause may be used to refer to a group of nodes, whine each identifier used within
the node's parameter specifications must have a corresponding parameter range .specification in the
where clause, as above. A node type Identifier also may be used to refer to a group of nodes for a
conueclion, if all the nodes of that type are connected with a single connmiuicalion link.

Equivalent nodes, if any, are listed next, beginning with the keyword equivalent followed by

Vt-no.MODO, Inc. Fiiml Technical Jfeport rAO.i5l>-(l7-C-(llN 24

oacli group of equivalent nodes. Within each group the individual node or groups of nodes are
specified in tlic same manner as tor connections, with the runic spwifkaikus separated by commas,
enclosed in braces, and terminated wiih a semioolon. Providing the seis of equivalent nodes enables
ttie optimal dcployiiiunt to hv LaUuhit^l niorc efficiently.

Several consUaints may be placed on the deployment of eomponentc to nodes. For example,
some components may execute only on a subset of the network's nodes Some components must
be deployed to the same node, while other components must not be c-j-located. Finally, some
components must be deployed to particular nodes.

Each component specification consists of an identifier, corresponding i j the name of the compo-
nent, and a list of its parameters, ii any, separated by commas and enclosed in square brackets. An
optional where rlanse may be used to refer to a group of components, where each unbound identifier
used within the component's parameter specilicalions must have a cone: jonding parameter range
specification in the where clause, as for nodes.

The support constraints, if present, specify which components may be deployed to which nodes.
The section begins with the keyword support and gives for each nod? or group of nodes the
list of components they support. Each individual support constrain! begins with an identifier,
corresponding to the name of a node or node type. If the identifier corresponds to the name of a
node, it is followed by the list of the node:s parameters, if any, separatee by commas and enclosed
in square brackets, and an optional where clause specifying the range of values for the node's
parameters. The node spedfication is followed by the symbol <- and either a list of specifications
for the supported components, separated by commas, or the keyword alt if the nodes support all
components. Each support constraint ends in a semicolon. If no suppon constraints are included
in a deployment specification, every component may run on every nc Ic; otherwise, a support
constraint must be supplied for each node.

The together constraints, if present, specify groups of components Oat must be deployed to-
gether to the same nodes. The section begins with the keyword together and consists of groups
of component specifications, separated by commas, enclosed in braces. ? id terminated with semi-
colons.

Similarly, the separated constraints, if present, specify groups of components that must be
deployed to separate, distinct nodes. The section begins with the keywoi 1 separated and consists
of groups of component specifications, separated by commas, enclosed i braces, and terminated
with semicolons.

The fixed constraints, if present, identify the components that must te deployed to particular
nodes. The section begins with the keyword fixed. Each individual feed constraint begins with
an identifier, corresponding to the name of the node onto which the component is to be deployed,
and a list of its parameters, if any, separated by commas and enclosed i: square brackets. This is
followed by the symbol <- and a second identifier, corresponding to the name of the component.
and a list of its parameters, if any, separated by commas and enclosed in square brackets. Each
constraint ends with a semicolon. Since a fixed constraint assigns a siiu.le component to a single
node, neither a where clause nor a node type may be used in the specifi ations.

The final deployment, section, a mandatory communication section. .•. lerilies the frequencies of
the composite autoniatous comimmicating transitions. It consists of tha keyword communication
followed by the individual transition specifications. Each transition specification begins with an
identifier, corresponding to the name of the "sending" component, a lis of its parameters, if any,
separated by commas and enclosed in square brackets, followed by the dot symbol ,, and a second

VEROMODO. Inc. Final Technical Report FA9550-07-C-01I4

idcntilicr, corresponding to the name of one of the component's transitions. These are followed by
the symbol -> and a list of component specifications, separated by commas, for the "receiving"
components. The transition specification ends with the keyword f req followed by an expression for
the frequency of the transition, optionally the keyword msgSize and an expression for the average
size of the transition's "message", and a semicolon. The transition must be an output transition
of the ^sending" component and an input transition of each of the "receiving" components. The
units and time interval for the transition frequency and message size expressions are not specified
as part of the dcployinent annotations: it, is assumed that application-specific units are selected
and uniformly used for all transition specifications and connection bandwidth limitations.

A for loop can be used to specify groups of similar Liausitions, such as those of gossiping data
replicas. The for loop begins with the keyword for. an identifier for the loop variable, the keyword
in, integers for the lower and upper bounds on the loop variable, separated by the symbol ...
and the keyword do. These are followed by one or more transition specifications, as above, and
the keyword od. Each occurrence of the loop variable among the parameters of the '"sending^ and
''reccivinj;" component sperifiratinns is replaced, in turn, by each value between the. loop variable's
bounds (inclusively).

5.3 Eventually Serializable Data Service Annotations

An Eventually-Serializable Data Service (ESDS) [8, 7} maintains mulliple copies of its data for fault
tolerance, but it selectively relaxes the consistency requirements among its copies of the data in
exchange for improved performance. ESDS guarantees that the replicated data will eventually be
consistent, although it may not be at a particular point during the execution.

ESDS consists of four types of components; clients, front ends, replicas, and channels. The

clients request operations to be performed on the shared data and receive responses containing the
results of these operations. The front ends communicate with the clients, keeping track of all their
pending requests and forwarding those requests to one or more of the replicas. Each replica keeps
a copy of the requested operations on the shared data and a partial order on those operations;
the partial order must be consistent with both the responses and the eventual total ordering of
the operations. The front ends do not send every request to every replica, so the replicay "gossip'
among themselves to stay informed about all the operations that have been received and processed.
The chauueis are used to transmit these gossip messages.

Figures 6 and 7 illustrate the componenL communication of an example ESDS and the computer
network onto which it is to be deployed. This example first appeared in [l]. More recently,
the example was hand-coded in Comet to test the feasibility of using constraint programming to
determine optimal deployments [21]. Figure S contains the Tempo deployment aunotatious for this
example.

The example consists of four clients, c[l|, t[2|, e[3}, and c[4], two front ends, fc\\\ and /cl2], and
six replicas, r(l], r[2], r[3|, r[4\, r[b], and r[(i|. Clients c[l] and c[2] make their requests of /ejl], and
clients c{3j and c}4] make their requests of fc[2\. Front end fc[l], in turn, forwards its requests to
rfl], and front end /e[2] forwards its requests to r[4]. The components are to be deployed to four
PCs, pc\l\. }x:[2], pc[3], and /;c[4], and ten Sun servers, sim[lj through 9un(10|. Each of the PCs is
connected to a Sun, and all of the Suns are connected to each other with a common connector.

Several additional requirements are placed on the deployment. First, c[l], c[2j, and t[3] must
be deployed to PCs; the rest of the components must be deployed to Suns. Second, to maintain
fault tolerance, the replicas must be deployed to distinct computers. Third, /(:[ll must be deployed

VKUOMODO, In Final Tedmicu} Report FA055(i-O7C-OlN

Figure 7: Nodes Tar ESDS example.

Figure G: Components for ESDS example.

to inm[2], and /e[2) most be deployed to smijli]. Tins last reqniremen. was added lo make liie
deplovmeni opLimizalion more tractable in its initial iinpienieittaUou [1].

The Tempo implementation of ESDS requires cliannels between each pair of replicas, making
tlie model more consistent with the original ESDS model [8]. These cliLimels are named c/i[l, 1)
through c/t[G,G], where replica r[i\ uses channel clt{ij] to gossip with replica r\j]. The channels
require an additional set of deploynienL constrainls, namely, each replica rj*) mnsl be co-located
with each of its channels c/i[i,j]-

The ESDS automaton in Figure 8 stores both its components and its nodes in arrays. For
example, the Client components are declared in the components section "ith

c[i : Nat) : C7icn/(0 where i \in 1..4;

Note that the data type of the array index must be declared as an Nat. The range of the array
indices is specified with the keyword where followed by the index varia.le, the keyword \in. the
lower bound of the indices, two periods, and the upper bound of the indices. Array indices need
not start with 1. Both the component and node arrays may be multi-dime isional. such as the array
t/i uf Chaunel components.

The components and nodes that are stored in arrays may be accessed both individually, such as
lfc\'-i\.. or as a group of sequential elements, such as sim[i] where i \in 5..1C in the equivalent section.
Again, a where clause is used to specify the range of array indices. Note that the range of indices
may be used to specify a subset of the elements in an array.

In the communications section nested for loops may be used to spec ty similar transitions for
arrays of components. This is particularly helpful hi the ESDS autouuUo for specifying the gossip
frequencies of the 72 trmisitions among the replicas and channels.

6 Generating deployment models

The deployment annotations are incorporated into the Tempo Toolkit [V] as a new plug-in. The
plug-in translates the annotations into a Comet constraint program, wind is subsequently executed
to determine an optimal allocation of components to computing nodes in the target network. We
now describe in detail the translation scheme, the resulting Comet program, and the language
restrictions designed to enable effective automatic generation of optimal icployment.

VEROMODO. Inc. F^oaJ Technical Report FA9SS0-07'G-01i4 -27-

aulomaton ESUS
components

c[i : Nat] : C'/ieii/(0 where j \m 1..4;
fe\i: Nat] : /■VOT^IU^O where i \in 1,.2;
r[(: Nat] : Rcplica{i) where i \in 1..G;
c[i: Nat, j : Nat] : CViamif^i,./) where

i\in l-.G /\j \in 1-0;
deployment

constants
clFreq: Nat := 10;
c2Freq : Nat := 2;
cZFreg: Nat := 10:
cAFreq : Nat := 5;
yossipFreq : Nat := 5;

nodes
pc\i : Nat] where (\m L.4;
sun[i : Nat] where i \in 1..10;

connections
{^ll]lS(m[l]};
{^[2]!S»n[2]};
{j^[3]:5im[3]}-.
{pc[4].,sun\4]}-
{sun\i] where i \in 1..10};

equivalent
{sunft] where i \in 1..4};
{sun{i] where i \in 5..10};

support
pc[i] where i \in 1..4 <- cjl], c:[2],c[3l;
sun\i] where (\in 1..W <- r[4]T/(-.[l],/e[2],

r[ij where i \in 1..G;
i>un[i] where i \in 1..10 <- c\i,j\ where

i \rn L.fi /\j \in 1..G;

fixed
sini[2l <- /(;[1];

separated
(r[ij where i \in 1..6};

together
{r|l].c/i[l,7] where j \in 1.
{r[2]1c/i(2;j] where j \in 1.
{)-[3],c/i[3,j] where 7 \in 1.
{r^l^c/^, j] where j \in 1.
{r[5j.f/i[5, j] where j \in 1.
{r[G].r/([fiJl where j \in 1,

communication

c[l].request -> /e[l] freq clFrcq\
c[2].request -> Je\l\ freq c2Frcq\
c[3j.request -> /e[2] freq cZFrcq;
cj4j.request -> fe\1\ freq c4Freq;
/e[l].send -> r[l] freq cXFrcq + c2Fre.q\
/c[l].response -> c[l] freq cU-Veg;
/e[lj.response -> c[2] freq c2Freq\
/e[2].send -> r[4] freq c3Frcq + c4Freq;
/e[2].response -> c[3] freq c3Freq\
/e[2].response -> c:[4j freq cAFreq:
r[l).receive -> fc\l] freq clFreq + c2Freq\
r[4].receive -> fc\2] freq cZFreq + cAFreq;
for i in 1..G do

for j in 1..6 do
r[(].gossipSend -> cli[i.j] freq yussipFrcq;
c/i[i, jj.gossipReceive -> r\j] freq qossipFrcq;

od
od

Figure 8: Deployment aiuiolaLions for ESDS example

VEROMODO. In Final Teclmicai Report FA95S0-0T-O-Qn4 -28-

6.1 Tianslation Scheme

Tlte deploymeul. aimoLiitious are extensions to Uie Teuipo language,
so care was taken In mhiimize their Impact on existing Tempo pro-
grams. To that end, the deployment annotations only occur within
the definition of composite automata, and they are isolated within
those definitions to a separate new section begimiing with the key-
word deployment.

The translation process begins by enumerating all the cumponents
and nodes and assigning their names, as provided by the Tempo mod-
eler, to two arrays of type string. The Comet program then identilies
the components and nodes by the indices of their names in these ar-
rays. For example, for the deployment annotations in Figure 2 the
array of node names is ["7il","n2","Tj3","ri4"] and the connection
sets {7(1, n2} and {?i2, n.'i, 7i4} are encoded as {0,1} and {1,2,3}. At
the end of execution, the Comet program displays the nptimal deploy-
ment with the Tempo modeler's names. Figure (J shows the resulting
deployment output for all but the channel components of the ESDS Figure 9; Deployment for

example in Section 5.3. ESDS Example
The variables declared in a constants secLion of the deployment specification are carried over to

the Comet program and declared and initialized there. When these variab es are subsequently used
to specify communication frequencies, for example, the variable names, rather than their values, are
encoded in the Comet program. This allows arbitrary arithmetic expressions for connnunicatiou
frequencies without requiring the Tempo front-end to evaluate those expressions.

Deployment:

pcta - ctl]
pcra - eta
pc[3] "- c[3]
sun[3] <- c[4]
sun[2] <- U(Si
sun[3] <- fet6]
sun[2] <- r[7]
sun[5] <- r[8]
sun[l] <- r[9]
sun[31 <- r[10]
sun[4) <- rCll]
sun[6] <- r[12]

6.2 Comet Program

The output of the translation stage is a COMET program. That progiam relies on Constraint
Programming technology to solve the deployment problem optimally. Constraint programming
delivers a complete solution method. Constraint programs revolve around two components. A
declarative componenl state the discrete decision variables, the constra nts that every solutions
must satisfy and the objective function. The second component focuses on the specification of a
tree-search process revolving around an implicit enumeration.

The TEMPO translator for COMET produces a complete model that features both the declarative
componenl and an instantiation of a search template. That template takes advantage of the prop-
erties conveyed through the annotations such as the equivalence classes (specified in the equivalent
section) among nodes (o implement a symmetry breaking procedure thatconsiderably reduces the
running time.

As with equivalent and support, the generated COMET code varies depending upon whether or

not bandwidth constraints arc included in the deployment specification. Five different interpreta-
tions of the bandwidth constraints were considered.

• A single path is used between each pair of nodes.

• A single path is used between each pair of components.

• A single path is used for each transition.

VF.ROMODO, Inc. Final Techniaii Report FA9550-07-C-0114 -2!)

• A single path is used for each message.

• Multiple paths may be used for a single message.

We chose to use a single path between each pair of components since that option most closely
embodies the concept of establishing a connection belweou components. Subsequent versions of
the deployment plug-in may include other types of bandwidth constraints, or even include coimnn-
uicalion load balancing amoug the connections.

Performance-wise, the programs generated with the help of the TEMPO translator are more than
competitive with hand-written programs. When applied to the ESDS deployment, the generated
program is, to this date, the most offcrtivo way to solve the problem. The effectivoncss of this
approach, when compared with modern mixed-integer programming solvers, is reported in [2'2\. For
the ESDS example in Section 5.3, the COMET program finds the optimal deployment ;ipproxhnately
20 times faster than CPLEX version 11 and 25,000 times faster than the hand-coded C program
reported in [1].

6.3 Tempo Language Restrictions

Each of the Tempo Toolkit plug-ins place some restrictions on the Tempo language constructs
which are supported, and the deployment plug-in is no exception. First, since the components
and nodes must be enumerable, the contents of their where clauses currently are limited to range
sets of type Nat and the /\ operator, an in c[i.,j\ where i \in 1..G /\ j \in 1..6. Second, nested
composite automata are not supported, pending identification of distributed systems that require

this modeling complexity.
Tempo specifies the comnnmication among components implicitly; each output transition is

linked with all input transitions having the same name and matching parameters in other com-
ponents. One of an output transition's parameters often specifies an identifier for the component
with the matdung input transition. This is particularly useful for applications using arrays of

components.
Unfortunately, this implicit linking through parameter values makes it extremely difficult for

the Tempo deployment annotations to match output, transitions with input transitions at compile-
time as needed, rather than run-time. The current annotations use explicit, rather than implicit,
transition matching as a result. For example from Figure 2, a2.send -> hZ freq 10; gives the
frequency of the send output transition of (i2 when it is linked with the send input transition of
63, and td.gossip -> bi,b2.b'i freq 5; gives the frequency of the gossip output transition of al when
it is linked with the gossip input transitions of &1, 62, and 63. The downside of this approach is
that the Tempo front end can only do limited error checking. In the first example, the front end
ensures that a2 and 63 have send transitions of the proper type, but it does not ensure that the
transitions actually will link in a run-time setting nor does it ensure that there aren't additional
send input transitions in other components which also will link with the output transition. An
alternate connnunicatton syntax being considered is (i2.send{_.,3) freq 10;, which implicitly links
the parameter 3 to a parameter of type const in the send input transition of component 63.

7 Solving deployment models

This section describes the optimization model that one obtains from the TEMPO translator when
it is applied to the Eventually Serializable Data Service applicatibn. The section starts with a pre-

VBBOMODO, Inc. Final Teclmkul Report FA9550-{I7C-01N

senUilion of the abstract model fuiluwed by its incarnation in COMRT as cunstraint proyrannnin^
model.

7.1 The Abstract Model

Tlie input, data consists of

• The set of software modules C.

• The set of hosts A'.

• For each component; the subset of hosts to which it can be assigne::. In the following. 5Cin is
a boolean variable equal to true if and only if component c can be assigned to host n,

• The network cost is directly derived from its topology and expressed with a matrix li where
/i, j is llie minimum number of hops required to send a message fr:in host i to host j. Note
thai hiji = 0 (local messages are free).

• The message volumes. In the following, fa£ denotes the average fi?qnency of messages seal
from component a to component b.

• The separation set Sep which spcciiics that the components in each S G Scp must be hosted
on s different servers;

• The co-location set Col which specifies thai the components in eac 5 & Col must be hosted
on the same servers;

The decision variables xc are associated with each module c e C and r,: — » if component c is
deployed on host n. An optimal deployment miinmi-/es

EE/^'^
subject to the following constraints. Each component may only be assigned to a host that supports
it

VceC : .Tce {i e JV|SCI1- i}.

For each separation constraint 5' e Scp, we impose

Vi,j 6S : t#j =*JCj /xj.

Finally, for each co-location coiisliaint expressed over a subset of compo-.ents S £ Col, we impose

Vi,j e 5 : x, — XJ.

7.2 The CP Model

The COMRT constraint program generated by TEMPO for the Eventually Serializable Data Service
Deployment Problem is shown in Figure 10. We review it's main compoi -^nts.

VI-ROMODO. Inc. Final Technical Reporl FA955(l-07-C-0n4

i range Caps — l.-iibCap;
3 range Colors - l..nbColors;
i range Orders ■- l..iibOrdcrs;
s range Slalw — L.nbSlatiS;
s int capacit ic^lCaps] -- ...;
r, int \u:iglii(Or.!erfi| - ...;
7 inl r,ol or [Orders] -...;

B set{int} ri)lorOrilt;rs[c in Colors] = filtcr(Q in Orctcrs) (coimfo) == c);

n int maxCap -- rnax(i in Caps) capacitics[ij;
12 int lossfr in 0,.iiiuxCap] — min(i in Caps: capacilioa[i] >- c) capacitics[ij - c;
■a
HS^vet<CP> in():
is var<CP>{int} x[Ordcrsl(iii,Slabs);
ir. var<CP>{int} l[Slal)s](in10..inaxCap);

is mininiize<m> 5uin{s in Slabs) lo.ss[i[s]]
i!f subject to {
3ir III. |K>sl(imiilikiiapsack(x, weight,1});
2i forall(s in Slabs)
72 iii,[Mtsl(suni(c in Colors) (or(o in coloiOrdcrsfc]) {x[o| —— s)) <= 2);
33 } using (
24 rorall{o in Orders) by (x[o).gclSizc{),-weiglit(o]) {
2i int ins -- inax(0,inaxBoiiiid(x));
2r, tryal!<ni>{s in Slabs: s <- ms + 1)
2T in.label(xH,s);
2!- onFailure
» iii.diff(xH,5);
» }
«)

Figute 10: The Coiislrahil-Prograiiiiinng Model in COMET

7.2.1 ■ The Model

The model is depicted in lines 1-21 in Figure 10. The data declarations arc specified in lines 2-10
and should be self-explanatory. The decision variables are declared in line 10 {they are the same
as in the ESDS model given earlier): variable x[c] specifics the host of component c and its domain
is computed from the support matrix s.

The objective function is specified in lines 12-13 and eliminates the diagonal elements (since
/i, ■ = 0 for every i € JV). The CP fonnulaLion features a two-dimensional dement constraint since

the matrix h is indexed by variables. Lines 15-18 stale the co-location constraints: for each set S
(line 15), an element ci G 5 is selected (randomly) and the model imposes the constraint xCl = XQ

for each other elements eg in 5. Lines 19-20 state the separation constraints for every set in Sep
using alldifierent constraints. The onDomains annotations indicate that arc-consistency must be
enfoiccd on the equations and alldillnent constraints.

It is interesting to discuss the pruning performed by the objective function when an upper bound
is available. In COMET, the multi-dimensional element constraints are inipleinented in terms of a

VEROMODO, Inc. Fhuil Tedinkal /Vepun FA9550-07-C-0il4 >i2_

table T which contains all the tuples

{a.h,liail.) {a.be C).

COM8T also creates a new variable (T(i/, foi" each term ha^-j in the abjective and imposes the
constraint

on which it achieves arc consistency. With this in place, the objective tl en becomes

B€C6eC

7.2.2 The Search Procedure

The search procedure is depicted in lines 23 29. It is a variable labeling witb dynamic variable and
value orderings. Lines 24-28 are iterated until all variables are bound (line 23) and each iteration
nondeterministically assigns a variable x[i] to a host n (lines 25-26).

It Is interesting to review the variable and value orderings which are uotivated by the structure
of the objective function

In the objective, the largest contributions are induced by assignments 0/ components i and j that
are communicating heavily and are placed on distant hosts. As a result, the variable and value
ordering are based on two ideas:

1. Assign first a component i whose communication frequency /|i,jf] with a component j is
maximal (line 24);

2. TVy the hosts for component i in increasing number of hops requ red to communicate with
component j (line 25).

The variable selection thus selects lirst components with the heaviest (single) communications,
while the value selection tries to deploy the components to minimize the mnnber of hops.

Arc-Consistency for fitering The CP model used here is quite elegant since it enforces arc
consistency on all constraints and the objective function. One may wonder whether arc consistency
is critical in ESDSDPs or whi'tlicr a wi-akcr form of consistency is suHcient. Table 1 depicts a
comparison of a bound-consistency model and an arc-consistency model on a collection of synthetic
benchmarks. The second and the third column report the results of the CP solver when bound
consistency is enforced on the. objective, while the fourth and the fifth columns report the perfor-
mance for the arc-consistency model. The experimental results show a dramatic loss in performance
when arc consistency is not used and underline the importance of usin.; sophisticated constraint
programming techniques to deliver the desired performances.

VRROMODO, Inc. Final Technical Report FA955U-U7-C-01N 33

Algo cr •BC CP-AC

Bencb ■i\,.,, #CHPT Ti:rl<j #CHPT

SIMPLE2 1.20 7582 0.23 2510

SIMPLE1 c.u 46874 1.38 15408
SIMPLEO 37.21 307305 7.75 87491

fc3c5pc 94.81 748118 2.76 14597

fe3c5i>c5 639.87 4705378 4.04 24130

fe3c.(isiiu 100.39 1330353 6.29 30621

fe3cGPc5 1039.20 7238005 3.54 18547

fe3c7pc5 2107.10 14440831 7.83 35726

re3c7pc5CS 1910.50 12940789 7.77 35312

fe3c7pc5CST 1286.37 8557292 13.68 70495

feSdist 93.64 839781 4.10 20750
SCSS1SNUFE 02.80 482001 43.34 392028

SCSS2SNUFE 00.47 442373 60.43 380117

SCSS2SNCFE 30.41 246228 50.83 322472

HYPERS 7053.00 33628203 65.07 123213

HYPER1G 34570.90 150832040 237.53 513051

Table I: The Value of Arc Consistency for the CP Model

Exploiting Value Symmetries As discussed earlier, some instances of the ESDS deployment
problem featnre a variety of symmetries, which can be removed to improve the search performance
without sacrificing optimality guarantees. Techniques for removing these symmetries during search

are well-known {see, for instance, [33|).
Figure 11 iUustrates how to enhance the search procedures presented earlier with symmetry

breaking. The sets of equivalent hosts are supplied as additional input data and are used to deter-
mine the set of non-equivalenl hosts (lines 12}. Each iteration of the search procedure calculates
the set of nodes that are bound in line G and the set of nodes that are eligible to host the next
component with lines 7 through 11. Line 7 starts by initializing the scarchNoiles, to all the nou-
equivaleut nodes plus all the nodes on which components are already deployed. The loop in lines
8-11 simply adds to scarchNodes one slill unused node from each equivalence class.

8 A Formal Treatment of an Abstract Channel Implementation
Using Java Sockets and TCP

Our earlier research substantiates our ability to implement practical techniques for generating dis-
tributed rode automatically, starting from formal Input/Output Automata (IOA) specifications in

Tempo. Namely, we have developed an aiitomaled code-generator for IOA programs in a specific
node-chamiel form that produces Java code running over MPI on a local area network (30, 31), and
have used this to generate running versions of a variety of basic distributed algorithms [lO]. We have
also developed two complete distributed systems by manually (but systematically) translating for-
mal IOA specifications to distributed code, using C (-+/MPI to implement an eventually-scrializable
data service [7), and using .lava/sockets to implement a reconfigurable atomic read/write memory
service, called Rambo, e.g.. see [2G. 11]. The methodology that emerged as a part of the develop-

VEROMOOO, Inc. Final Teclmica! Report FA955(U)7-C4)ll4

i set{set{int}} Rq = ...; //The. eqoivokxA host sr.fs
3 set{int} NolEtj — ...: //The rion -vqiriinilnnl Ueats

i wliile (aum{k in C) x[k].boiiiid() < C.grlSi/x'O) {
seIectMax((i in C: !x[al.boLiiid(), b in C)(f[a,b]) {

r, set{int} IxvundNodw = collect(s in C : x[s].bou[Ki()) x(si];
T sctjint) yoardiNodes ~ nolEq iinion(union{{! in Rq) e inter bomidNodt^);
e forall (e in Eq) {
<i set{int} Ion = c \ boimdNodea-:

10 if (card (fen) > 0) sciucliNadcy.inycrKniin (n in fen) n);

}
u int k =■ niin{k in N : x[c2],nicmljcrOr(k)) k;
i\ tryall<ni>(n in seardiNude,s : x[cl].ni(!inbcrOf(n)) by (li(ii, k|)
ii cp.post(x{H] == n);
is onFailure
i-i cp.post.(x[aj !« n);

}

Figure 11: Tlie Search Procedure with Value Symmetry Breaking

ment of the latter system (Rauibo) will be the basis for prototype imiilemeiitatiou and eventual
production-grade compiler for Tempo.

As a part of this cfl'mi, wo have addressed the problem of mapping Tempo-specihed thaunels
used in dynamic distributed systems to executable code en route to piatotyping automated code
generation.

Abstract models and specifications can be used in the design of (Bstiiliuted applications to
formally reason about their safety properties. However, the benefits of using formal methods are
often negated by the ad hoc process of mapping the functionality of an abstract specification to
the low-level executable code for target distributed platforms. We have developed the first formal
specification of an abstract asynchronous communication channel witli support for dynamic creation
and tear down of cominunicatiou links between participating network nodss, and its implementation
using Java sockets. The specifications are expressed using the Tempo fornialism, and it is proved
that the resulling implementation preserves the safety properties of tl e abstract channel. This
approach can be used to implement algoritlnns for dynamic systems, where conmnmicating nodes
may join, leave, and experience arbitrary delays. This directly benefits automated code generation
we are targetting in this project, and we plan to include an implemeulat on of such channels In the
Tempo toolkit as a standard building block for dynamic distributed systems. Our results appear in
the proceedings of 2008 IEEE Inlcniaiional Symposium on Network Ccinpulintj and Applications
[121,

8.1 Rationale: towards code generation

The increasing complexity of distributed software systems makes reasonii g about their behavior ev-

ermore challenging. Abstract specifications of distributed systems simplify formal reasoning about
their safety guarantees, and several formal systems have been used for this purpose. However, this
abstraction makes challenging the mapping of the high-level specificatio i to the facilities available
in a target programming language.

VEHOMODCX Inc. Final Technical lieport FA9550~07-C-0n4 35

TranslaUon of abstract specifications into executable code for target envirounients is imrticularly
cbnllengiiig in tlic case of connmmication channels. Distributed services are designed fur a speeitic
connuunication model, where the safety properties of the comnumication links used by service
directly impact the safety guarantees of the overall system. Commoii practice often foregoes the
rigorous safety arguments about the cbaimel implementation and its interaction with the system
components. Hence, it is not clear whether the resulting implementation is correct with respect to

its high-level specification.
The key contribution of this work is the first speciiication of an abstract asynchronous commu-

nication channel with explicit support of dynamic creation and tear down of communication links
between the network nodes, ajid its implementation using Java sockets and TCP. For simplicity,
our solution associates a unique socket with each communication link between a pair of nodes,
and thus it assumes that once a node closes a connection with some destination, it will not try
to subsequently reopen it. Our solution can be naturally extended to incorporate multiple, con-
current, point-to-point socket connections. We prove that the implementation preserves the safety

guarantees of its abstract, .specification.
In this work we use the Input/Output Automata model to specify and reason about the behavior

of distributed algorithms. A plethora of algorithms have been described using this model. We refer
to the language used to describe systems in this model as IOA. It is of practical interest to be able

to correctly specify and translate IOA models into executable code.
Tauber [30) wrote the IOA compiler, which uses a target programming framework consisting of

.Java and MPI The compiler design is proved correct to ensure that the safety guarantees of the
source specification are preserved by the resulting .lava/MPI implementation. However, the choice
of MPI limits the domain of systems to those that do not encounter failures and arbitrary message
delivery delays, and that do not have nodes joining and leaving during execution. Given that our
approach allows failures, delays, and dyuannc node participation, another direct application of
the work presented here is an alternative method of implementing robust communication channels
using TCP and Java sockets. Note that both methods of comnumication, i.e., Java/MPI and
Java sockets/TCP; may be employed by a compiler, where the first can be chosen for failure-free,
performance-oriented applications, whereas the second is chosen for dynamic applications using

asynchronous channels.

8.2 Technical development: channel implementation

We present an asynchronous communication channel that connects applications running on any

number of networked machines. Each sender node may create couneclions with any number of
receiver nodes, and either the sender node or the receiver node may gracefully close the connection.
Messages may be lost, delayed, and delivered out of order. The current model supports only a
single socket connection between any two nodes. Thus, once a connection between two nodes is
established and subsequently closed, it cannot be reopened (unless it can be determined that the
socket can be reused). Allowing multiple, possibly concurrent, socket connections between two

nodes is a straightforward extension to this model.
We first defined an automaton, called ABSCH, modeling the behavior of a many-to-many, asyn-

chronous communication channel that allows nodes to spontaneously connect and disconnect. The
connections are closed in a graceful way. ensuring that messages that are in-transit are delivered
before the connection is closed. The signature, state, and transitions of ABSCH are depicted in

Figure 12.

VSROMODO, Inc. Filial Tedmicnl Repoit FA9550-07-C-Qn4 -Mi

Signature:
Input:

send(i».tj). where me A/, i,j e /
receiverListeningfj). wtiere j € /
sendefOpen(!, j). whore i,j€ I
receiverStopListening(_(), where _; € /
receruerCIose(i, j}, where i, j e /
sen(ierClose{i,j), whore i.j £ /

StBtGt
»/iTssrtf/c*, subscl of A/ X / x /, initiaily fl
listeniny, suli.sct of I, iiiilmllv 9
xlalun : / x / — {closed, connecting, connected}, iniiinlly nil c
cmjUyiri'i ; / x / --• Boolean, inilially all false

TVa. ^tj..,,

inpul send(i.i,i1j)
KfTccl:

\t stntii.i(i,j) ^ closed A-'cm;^!/iHy(t,j) Hicii
incxs'igns ■— vir.ssagcsU {{'",',j)}

Listening(j)
Rfted

lislwiuij — fwteinuii U {j)

inpul sendefOpen{t,j)
Effect:

stnhn^i.j) — connecting

input receivefStopListening(j)
Effect:

Itsicniiig — fbteniag \ {j]

inpul (eceivetClcise(i, j)
Effect:

inessigej) — messages \ [{n
staliis(i,j) ■— closed

inpiil senderClo^t, j)
modtz

tviptvnig(i,j) — true

Output:
receive(rn,il j), where m fc .U and i,j e /
respReceiverLislening(i.j), v icn- I.J £ /

Internat:
senderClosing(i, j), where t, j £ /
lose(«i), where m £ A/

onlpnt receive("i,i. j)
Precondiiion:

(m:i,J}C meMOfia
s(n(u.i(i, j) = connect id

lllfci:
fues^apej •— Fiicis/iijcr \ {("M.j)}

ouiput fespReceiverUster<ng(i, j)
Precondition:

slaliij(i,j) = connect tig
j € lislening

Effect:
slaliis(i,j) — connected

internal senderClosing(i,j
Precondilion:

emptpmg{i,j)
Vfm, a, r) £ messQffejr, a jt i A r / j

Effect:
iIn(tM{i, j) — closed
em;ityiiig(t, j) •— falsa

intornai lose(Tfi)

{m,I.J) € tnessaga
Effect:

.sage. \ [{.n, i,j)]

Figure 12; Signalure, slato. aiid transitions of the abslract inany-to-inun'' ouloniaton, AUSCH.

VF.ROMODQ, Inc. Final Techuicnt Repoi(FA0550-U7-C-0U4

Node /

Application

Automaton

Send

Mediator

Receive

Mediator

JVM

Channel

TCP

Sockets

TCP

Sockets

Figure 13: Nude aiiLomaLoii.

Next, we developed an automaLon, called JVM-TCPCH, that models the behavior of the Java
interface to a communicalion channel using TCP. We do not model TCP itself or the Java Virtual
Machine (JVM) environment; instead, we concentrate on the high-level behavior and the specific
interface with sockets via the Java libraries.

Following Tanbers approach [30], we then establish a mediation between the sending appli-
cation, the communication channel, and the destination application. The mediating antomata
are mapped to the nodes of the corresponding application automata, as illustrated in Figure 13,
showing a node automaton composed of an application automaton and mediator automata, where
the mediator automata interact with the TCP sockets Lhrouglt the JVM-TCP channel interface.
We refer to the composition of the JVM-TOPCH automaton with the mediating automata as the
COMPCH automaton.

The method of forward simulation [Hi] is used to prove our main result that COMPCH implements
ABSCH, hence preserving the properties of our abstract asynchronous cliamiel. The full technical
development can be found in the available technical report. The main result is formally stated as

follows.

Theorem 1 The seL of traces of COMPCH is a subset of the set of traces of ABSCH.

9 Conclusion

This results documented in this report were developed under Phase I STTR contract for topic
AF07-T019. This project advanced the state of the art in formal modeling and engineering of
complex distributed systems. The project included: (a) modeling language that can be used to
represent complex distributed systems, theory and methodology providing mathematical basis for
modeling systems and reasoning about their properties, (b) extensible and scalable analysis tools
that can be used to validate correctness and performance properties, and synthesis tools for produc-
ing eflicifnt deployment schemes of the software romponcnts in target networks subject to specified
constraints. The project extended the methodology to incorporate additional means for reasoning
about probabilistic and hybrid systems. The project extended an integrated development environ-
ment, called Tempo, for modeling, synthesis, and analysis of distributed systems, developed tools
for efficient deplnvment of the software components in target networks, and explored a methodology

■

VKROMODCX IIK-. Final Tedwicni ffe/jort FA055(i-07-C-0lN 38_

(or generaling code.
CurreiU work on fuluie exteuyious for the Tempo loo!sel and ihe overall inelliodoiogy is funded

by XSF, and includes work on distributed code generation from Tempo specifications and opti-
mization of distributed system deploynienl in target network platfunns.

Currem releases of Tempo toolset for Linux, Windows, and OSX/PPC platforms are availabk"
at www.veromudo.cuni.

References

[Ij M. C. Bastairica. Architectural specificution and optimal dtploymfit of tUstributed systems.
PhD thesis, University of ConnecLicut, 3000.

|2) M. Cecilia Bastarrica, Steven A. Demmjian, Alexander A. ShvarLsm^n. Software Architectural
Specification for Oplimal Object Distribution. SCCC 1998, pages 25-31, 1998.

[3) M. Cecilia Bastarrica, Rodrigo E. Caballero, Steven A. Deinurjian, Alexander A. Slivarlsman.
Two Optimizatiun Techniques for Component-Based Systems Deployment. SEKE 2001, pages
153-1G2, 2001.

[4] R. Canetti, L. Cheung. D. Kaynar, M. Liskov, N. Lynch, O. Pereirt, and R. Segala. Analyz-
ing Security Protocol Using Thne-Buunded Task-PIOAs. Journal of Dtsrrclc Event Dynamic
Systems (BEDS), volume 18, number 1, March 2008.

(5) Ran Canetti, Ling Cheung. Dilsun Kaynar, Nancy Lynch, and Olivier Pereira. Modeling
Bounded Computation in Long-Lived Systems. SnbniiUed for publicwtiun, 2008.

[G] Anna E, Chefter. A simulator for the 10A language. Master's thesis, MIT Department of Elec-
trical Engineering and Computer Science, 1998

[7] Oleg Cheiner and Alex Shvartsman. Implementing an eventually-sfrializablc data service as

a distributed system building block. In M, Mavronicolas, M. Merritt, and N. Shavit, editors,
Networks in Distiibutcd Computimj, volume 45 of DIMACS Series in Discivtc Mathematics and
Theoretical Conipuler Science, pages 43-72. American Mathematical Society, 1999.

[8] A. Fekete, D. Gupta, V, Luchaugcu, N. Lynch, and A. Shvartsman. E/entnally-serializable data
services, In PODC '96: Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computiny, pages 300-309, 1996.

|9j S. Garland, N, Lynch, Joshua Tanber, and M. Vaziri. fOA User Guide and Refcivnce Manual.
MIT Computer Science and Artificial Intelligence Laboratory. Camb-idgc, MA. 2003.

[10] Chryssis Georgion, Nancy A. Lynch, Panayiolis Mavronnnatis, Joshua A. Tauber: Auto-
mated Implementation of Complex Distributed Algorithms Specified in the IOA Language.
ISCA PDCS 2005: 128-134

(111 Chryssis Georgiuu, Peter M. Mnsiul, Alexander A. Shvartsman: Lcng-lived Rainbo: Trading
knowledge for connuunication. Theor. Compnl. Sci. 383(1): 59-85 (2 K)7)

VgBgMODO, Inc. Final Technical Report FA955i}-07-C-nil'i - 39

[12] Cluyssis Georgiou, Peter M. Musial. Alexander A. Shvartsinan. Elaine L. SomJeiegger: An Ab-
stract Clianncl Sj)ecirication aiid an Algorithm Implementing It Using Java Sockets. Procccdiiujx
of The Seventh IEEE hUenuiliuiial Syrnposhun on Networkimj Coinpidin<i and Applications,

NCA 200S., pages 211-219, 2008.

[13] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Viumdrager. The Tite-
ory of Timed I/O Automata. Synthesis Lectures on Computer Scieuce: Morgan and Claypool

Publishers, 123 pages, 2006. ISBN 159829010X.

[14] Kim G. Larsen, Paul Peltersson and Wang Yi. UPPAAL in a Nutshell. In Springer Interna-
tional Journal of Software Tools for Technology Transfer 1(1+2), pp. 134-152, 1997.

[15] Daniel Liberzon. Sayan Mitra, and Nancy Lynch. Verifying Average Dwell Time of Hybrid
Systems. To appear in ACM Transactions in Embedded Conipntinfj Systeins.

[1G] Nancy Lynch. DistHbuicd Alt/onthrns. Morgan Kaufmami Publishers. Inc., San Mateo, CA,
1996.

[17] N. Lynch, L. Michel, and A. Shvartsinan, :,Tempo: A Toolkit for the Timed Input/Output
Automata Formalism", First Inicnudionul Conference on Simulation Toob and Techniques
for Communicalions, Networks and Systems (SIMUToots 2008). Industrial Track: Simulation
Works. CDROM, paper 3105, 8 pages, Marseilles, France, March 4-7, 2008.

[18j Nancy A. Lynch and Alexander A. Shvartsinan. A Framework for Modeling and Analyzin<j
Complex Dislribxdcd Systems. Final Technical Report. STTR Phase II Contract No. FA9550-
05-C-0178 VeroModo Inc., April 30, 2008.

[19] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Observing Branching Structure through
Probabilistic Contexts. SIAM Journal on Computing, 37(4);977-1013, September 2007.

[20] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-
Quarledy, 2(3):219-246, September 1989. Centrum voor Wiskunde eu Infonnatica, Amsterdam,
The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory for Computer Science, Mas-

sachusetts Institute of Technology, Cambridge, MA 02139, November 1988.

[21] L. Michel, A. Shvartsman, E. Sonderegger and P. Van Hentenryck, "Optimal Deployment of
Eventnally-Serializable Data Services/', Proceedings of the Fifth International Conference on
Integration of AI and OR Techniques in Constraint Pwgramming for Comhinatoiial Optimiza-
Hon Problems, CPAIOR 2008, Paris, France, May 20-23, 2008.

122] L. Michel, A. Shvartsinaji, E. Sonderegger and P. Van Henteuryck "Optimal Deployment of
Eventually-Serializable Data Services", Submitted to Annuls of Operations Researclh October,

2008.

[23] Sayan Mitra. A Verification Framework for Ordinary and Probabilistic Hybrid Si/stcms. Ph.D
Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute

" of Technology, Cambridge, MA, September 2007.

[24] Sayan Mitra and Nancy Lynch. Proving approximate implementation relations for Probabilistic
I/O Automata. Electwnic Notes in Theoretical Computer Science. 174{8):71-93, 2007.

VimoMODO. Inc. Finul Tedmiail ggport FA95S0A\7-C-ini4 -40-

[25] Sayan Milra and Kancy Lynch. Trace-based senianiicy of Probabili.s;ic timed I/O automata,
hybrid Systems: CompuUiiiuu and Control (USCC 2007), Pisa, Italy. April 3-5, 2007, volume
4416 of Lectun' Notes in Computer Science, Springer, 2007.

[26] Peter M. Mnsial, Alexander A. Shvartsman: Implementing a Rcconli^niablc Atomic Memory
Service for Dynamic Networks. Dili IEEE Workshop on FauU-Toleranl Parallel, Distributed and
Network-Centric Systems, pp. 802B {full paper on IPDPS2004 CD-ROM), Santa Fe, KM, 2004.

[27] S. Owre, S. Kajan. J.M. Rnshby. N. Shankar, and M. Srivas. PVS: Combining specification,
proof checking, and model checking. In CAV '9(1, LNCS 1102. pages 411 414. Springer Verlag.
1996.

[28] .1. Antonio Ramirez-Robredo. Paired sinmlalioii of I/O automata. Master's thesis, MIT De-
partment of Electrical Engineering and Computer Science, 2000.

[29] Edward Solovey. Simnhuion of composite I/O automata. Master's tlusis, MIT Department of
Electrical Engineering and Computer Science, 200.3.

[30] Joshua A, Tanber. Vc.njiahlc Code. Generation from I/O AiUomatn for Distnbnf.cd Coinput-
iny. PhD thesis. Department of Electrical Engineering and Compute: Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, 2004.

[31] Joshua A, Tauber and Nancy A. Lynch and Michael J. Tsai, Compi.ing IOA without Global
Synchronixatiou, Proceedings of the 3rd IEEE Inteniatioual Symposiui i on Network Computing
and Applications (IEEE NCA04), Cambridge, MA, 2004.

[32] Shinya Umeno. Event order abstraction for parametric real-tinu: system verification. In Inter-
national Conference on Embedded Software (EMSOFT S00S), Atlanta. Georgia, October 2008.

[33] P. Van Heutenryck, P. Flener, J. Pearson, and M. Agreu. Tractabl*: symmetry breaking for
csps with interchangeable values. International Joint Conference on Artificial Intelligence (IJ-
CAI'OS), 2003.

[34] An Extensible and Sculable Fmmcyjorfc for Formal Modeliny and Ai ulysis, and Development
of Distributed Systems, Proposal to AFOSR, STTR Phase I, Topic Na. AF07-T019, Proposal
No. F074-019-019(1I VEROMODO, Inc., March 2007.

REPORT DOCUMENTATION PAGE Form Approved
OMBNo 0704 0188

•niDimiban. Induing tuggillioni Im Kducmg ih. burdci. 10 UcpJilmini ol D*l*n». Wllhinglon H*»
1216 Jettfiion OIVII Highmy. Surti 1204, Arlngion. VA 27202 4102 R»ipoid»'iH jtioutd l» nvi
pimliy lo' Idlrng Is convly win 1 coMclnn or nloinuiKin if n oo»i r<01 displty * cuntnlly vabd OVti c<
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

rtg^iding ihn bwidsn iii.tnit* 01 (ny olfwi itpeci o(Ihn col'scioi
«s. D'KCIOim lei Inloimalon Op«<tI»ns (nd RcpoMI (07O4-O1f

REPORT DATE fDD-MM-VV/yj

30-11-2008
REPORT TYPE

I-1NAL TECHNICAL REPORT
3, DATES COVERED IFrom ■ To)

t5-Sl-P-2007- I4-JUN-2008
4. TITLE AND SUBTITLE

AN EXTENSIBLE AND SCALABLE FRAMEWORK
FOR FORMAL MODELING. ANALYSIS. AND DEVELOPMENT
OF DISTRIBUTED SYSTEMS

CONTRACT NUMBER

FA9550-07-C-OU4

5b, GRANT NUMBER

PROGRAM ELEMENT NUMBER

N/A

6. AUTH0R(S1
MICHEL. LAURENT D.
LYNCH. NANCY A.
SHVARTSMAN, ALEXANDER A.

5d. PROJECT NUMBER

5e. TASK NUMBER

WORK UNIT NUMBER

0001 AC

7. PERFORMING ORGANIZATION NAMEISl AND ADDRESS(ES)

VEROMODO. INC.
11 OSBORNEROAD
BROOKLINE, MA 02446

8. PERFORMING ORGANIZATION
REPORT NUMBER

VM-07-PIIASEt-FINAL-REPORT

9. SPONSORING/MONITORING AGENCY NAME(S| AND ADDRESS(ES)

DR. ROBERT HERKLOTZ
AFOSR
875 N. RANDOLPH STRET
ARLINGTON, VA 22203-1768

10, SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

1 1. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED O 15^

13. SUPPLEMENTARY NOTES

N/A

14. ABSTRACT

Report developed under Phase I STTR conlract for topic AF07-T0I9. This project advanced the slate of the art in formal modeling
and engineering ofcomplex distributed sysiems. The project included: (a) modeling language thai can be used lo represent complex
distributed systems, theory and methodology providing mathematical basis for modeling systems and reasoning about their
properties, (b) extensible and scalable analysis tools that can be used to validate correctness and performance properties, and
synthesis tools for producing efllcieni deployment schemes of the software components in target networks subject to specified
constraints. The project extended the methodology lo incorporate additional means for reasoning about probabilistic and hybrid
systems. The project extended an integrated developmem environment, called Tempo, for modeling, synlhcsis. and analysis of
dislributed systems, developed tools for efficient deployment of the software components in target networks, and explored a
methodology for generating code. Releases of Tempo for Linux. Windows, and OSX are available at www.vcromodo.com.

15. SUBJECT TERMS

STTR report, modeling language, disiribuied systems, analysis, simulation, specificalion. verification, deployment, oplimization

16. SECURITY CLASSIFICATION OF:

a. REPORT

u

b. ABSTRACT

U

THIS PAGE

u

17. LIMITATION OF
ABSTRACT

19a. NAME OF RESPONSIBLE PERSON

ALEXANDER A. SHVARTSMAN
19b. TELEPHONE NUMBER llnclode area code)

860-486-2672

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including

day, month, if available. Must cite at least the year

and be Year 2000 compliant, e.g. 30-06-1998;

xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as

final, technical, interim, memorandum, master's

thesis, progress, quarterly, research, special, group

study, etc.

3. DATES COVERED. Indicate the time during

which the work was performed and the report was

written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996;

May ■ Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume

number and part number, if applicable. On classified

documents, enter the title classification in

parentheses.

5a. CONTRACT NUMBER. Enter all contract

numbers as they appear in the report, e.g.

F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as

they appear in the report, e.g. AFOSR-82-1 234.

5c. PROGRAM ELEMENT NUMBER. Enter all

program element numbers as they appear in the

report, e.g. 61 101A.

5d. PROJECT NUMBER. Enter all project numbers

as they appear in the report, e.g. 1F665702D1 257;

ILIR.

5e. TASK NUMBER. Enter all task numbers as they

appear in the report, e.g. 05; RF0330201; T41 12,

5f. WORK UNIT NUMBER. Enter all work unit

numbers as they appear in the report, e.g. 001;

AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)

responsible for writing the report, performing the

research, or credited with the content of the report.

The form of entry is the last name, first name, middle

initial, and additional qualifiers separated by commas,

e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME[S) AND

ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.

Enter all unique alphanumeric report numbers assigned

by the performing organ zation, e.g. BRL-1234;

AFWL-TR-85-4017-Vol- 21 -PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S1

AND ADDRESS(ES). Enter the name and address of the

organizationls) financially responsible for and

monitoring the work.

10. SPONSOR/MONITOR'S ACRONYMIS). Enter, if

available, e.g. BRL, ARCEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBERIS).

Enter report number as assigned by the sponsoring/

monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use

agency-mandated availability statements to indicate the

public availability or dist/ibution limitations of the

report. If additional limitations/ restrictions or special

markings are indicated, follow agency authorization

procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include

copyright information.

13. SUPPLEMENTARY NOTES. Enter information not

included elsewhere such as: prepared in cooperation

with; translation of; report supersedes; old edition

number, etc.

14. ABSTRACT. A brief {approximately 200 words)

factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases

identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security

classification in accordance with security classification

regulations, e.g. U, C, £, etc. If this form contains

classified information, stamp classification level on the

top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be

completed to assign a cistribution limitation to the

abstract. Enter UU (Unclassified Unlimited) or SAR

(Same as Report). An entry in this block is necessary if

the abstract is to be lirriled.

Standard Form 298 Back (Re'

